
The Logic of Hereditary Harrop Formulas as a Specification
Logic for Hybrid

Chelsea Battell

Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial
fulfillment of the requirements for the degree of

Master of Science in Mathematics1

Department of Mathematics and Statistics
Faculty of Science

University of Ottawa

© Chelsea Battell, Ottawa, Canada, 2016

1The M.Sc. program is a joint program with Carleton University, administered by the Ottawa-
Carleton Institute of Mathematics and Statistics

Abstract

Hybrid is a two-level logical framework that supports higher-order abstract syntax
(HOAS), where a specification logic (SL) extends the class of object logics (OLs) we
can reason about. We develop a new Hybrid SL and formalize its metatheory, proving
weakening, contraction, exchange, and cut admissibility; results that greatly simplify
reasoning about OLs in systems providing HOAS. The SL is a sequent calculus de-
fined as an inductive type in Coq and we prove properties by structural induction
over SL sequents. We also present a generalized SL and metatheory statement, al-
lowing us to prove many cases of such theorems in a general way and understand
how to identify and prove the difficult cases. We make a concrete and measurable
improvement to Hybrid with the new SL formalization and provide a technique for
abstracting such proofs, leading to a condensed presentation, greater understanding,
and a generalization that may be instantiated to other logics.

ii

Dedications

To Amy Felty, my advisor and role model.

iii

Acknowledgement

Thanks and acknowledgment go to the Natural Sciences and Engineering Research
Council (NSERC) of Canada, Professor Amy Felty, and the University of Ottawa for
the financial support provided while completing this research.

I am extremely grateful for the guidance provided by Professor Felty to help me
through the many challenges faced while completing this degree and for her feedback
and assistance in editing all of the presentations and written documents related to
this research.

I would also like to thank Alberto Momigliano for the initial encoding of the data
structures for the specification logic and discussions through the course of this work.

iv

Contents

List of Figures viii

1 Introduction 1
1.1 Mechanized Reasoning . 1
1.2 Higher-Order Abstract Syntax 2
1.3 Hybrid . 3
1.4 Specification Logic Metatheory 3
1.5 Outline . 4

I Background 5

2 Coq 6
2.1 The Calculus of Constructions 6

2.1.1 Terms . 6
2.1.2 Judgments . 7

2.2 Simply Typed Lambda Calculus 11
2.3 Reductions . 11

2.3.1 Convertibility . 12
2.4 Dependent Types . 12
2.5 Higher-Order Types . 13

2.5.1 Polymorphism . 14
2.5.2 Type Operators . 16

2.6 Interactive Proving in Coq . 17
2.6.1 Proof State . 17
2.6.2 Some Coq Tactics, Tacticals, and Commands 20

2.7 Induction in Coq . 21
2.7.1 Mutually Inductive Types 24

2.8 Conclusion . 25

v

CONTENTS vi

3 Hybrid 27
3.1 Object Logics . 28
3.2 Ambient Logic . 30
3.3 Representing Higher-Order Abstract Syntax in Hybrid 30
3.4 Specification Logic . 31
3.5 Example OL Implementation . 34
3.6 Comparison to Other Architectures 37

4 Hereditary Harrop Formulas 39
4.1 Higher-Order Hereditary Harrop Formulas 39
4.2 Focusing . 42

II Contributions 46

5 Specification Logic 47
5.1 Contexts in Coq . 47
5.2 Hereditary Harrop Specification Logic in Coq 49
5.3 Mutual Structural Induction . 51

6 Specification Logic Metatheory 55
6.1 Structural Rules . 56
6.2 Cut Admissibility . 61

6.2.1 Subcase for g_dyn: Alternate Proof Attempt 64
6.2.2 Subcase for g_dyn: Original Proof Structure 67

7 Generalized Specification Logic 72
7.1 SL Rules from GSL Rules . 73

8 Generalized Specification Logic Metatheory 76
8.1 GSL Induction Part I: A Restricted Theorem 76

8.1.1 Sequent Subgoals . 77
8.1.2 Non-Sequent Subgoals . 79

8.2 GSL Induction Part II: The Structural Rules Hold 82
8.2.1 Sequent Subgoals . 82
8.2.2 Non-Sequent Subgoals . 83

8.3 GSL Induction Part III: Cut Rule Proven Admissible 84
8.3.1 Sequent Subgoals . 84
8.3.2 Non-Sequent Subgoals . 85

CONTENTS vii

9 Conclusion 87
9.1 Related Work . 87
9.2 Future Work . 88

A Notations 90

Bibliography 94

Index 94

List of Figures

2.1 Rules of CoC . 9
2.2 Subtyping in CoC . 12
2.3 Induction principle for type nat . 22

3.1 High-Level Hybrid Structure . 27
3.2 Terms in Hybrid . 31
3.3 Typing of λ-calculus Abstractions 32
3.4 Type of SL Formulas . 33
3.5 Induction Principle for oo . 34
3.6 Example OL: Encoding Syntax in Hybrid 35
3.7 Example OL: Encoding OL Inference Rules hodb_app and hodb_abs

in Hybrid . 36

4.1 The logic of higher-order hereditary Harrop formulas 41
4.2 The logic of higher-order hereditary Harrop formulas with focusing 43

5.1 Goal-Reduction Rules, grseq : context → oo → Prop 50
5.2 Backchaining Rules, bcseq : context → oo → atm → Prop 51
5.3 SL Sequent Mutual Induction Principle 52

6.1 Coq proof of monotone (Theorem 6.7) 71
6.2 Coq proof of 98/105 cases of cut_admissible (Theorem 6.8) 71

8.1 Proof state of GSL induction after rule application 78
8.2 Incomplete proof branches for sequent premises 79
8.3 Incomplete proof branch (g_dyn case) 81

viii

List of Theorems

2.1 Definition (Context) . 7
2.2 Definition (Sequent, Judgment) . 8
2.3 Definition (Derivation, Valid/Provable Sequent) 8
2.4 Definition (Dependent Product) . 8
2.5 Definition (Inhabited-in-Context) 10
2.6 Definition (Specification, Realization) 10
2.7 Definition (Formula, Proof Object) 10
2.8 Definition (βδιζ-Convertible) . 12
2.1 Example (Tuple as a Dependent Type) 12
2.2 Example (Parametrized Types) . 13
2.3 Example (Predicates) . 13
2.4 Example (Logical Connectives) . 16
2.9 Definition (Proof State) . 17
2.5 Example (Interactive Proof) . 18
2.6 Example (Proof by Induction) . 22

3.1 Example (Object Logic: Equivalence of Named and Nameless λ-
terms) . 28

4.1 Definition (Higher-Order Hereditary Harrop Formulas) 39
4.1 Example (Hereditary Harrop Derivations) 40
4.2 Definition (Uniform Proof) . 42
4.2 Example (Hereditary Harrop Focused Derivation) 44

5.1 Lemma (elem_inv) . 48
5.2 Lemma (elem_sub) . 48
5.3 Lemma (elem_self) . 48
5.4 Lemma (elem_rep) . 48
5.5 Lemma (context_swap) . 48
5.6 Lemma (context_sub_sup) . 48

6.1 Theorem (gr_weakening) . 56

ix

LIST OF THEOREMS x

6.2 Theorem (bc_weakening) . 56
6.3 Theorem (gr_contraction) . 56
6.4 Theorem (bc_contraction) . 56
6.5 Theorem (gr_exchange) . 56
6.6 Theorem (bc_exchange) . 56
6.7 Theorem (monotone) . 57
6.8 Theorem (cut_admissible) . 61

Chapter 1

Introduction

The goal of this research is to increase the reasoning abilities of an existing system that
is intended to help mechanize programming language metatheory. The system that
this work contributes to is called Hybrid [8] and is part of the research program carried
out by the Software Correctness and Safety Research Laboratory at the University of
Ottawa under the supervision of Professor Amy Felty. Hybrid is implemented both
in Coq [24] and Isabelle/HOL [18], interactive proof assistants used for applications
such as formalizing mathematics, certifying compilers, and proving correctness of
programs. Our application of Coq is proving metatheory of formal systems efficiently.
The contributions to Hybrid described in this thesis are to the Coq implementation.

1.1 Mechanized Reasoning
Proof is essential in modern mathematics and in logic in particular. We trust and
build on the work of others when we can see that they have presented a rigorous
argument supporting their work. When writing proofs with many cases or details
to manage, it is easy to make errors and these proofs are tedious to check. So we
must trust the proof writer (and all proofs that their work builds on) or else spend
an exorbitant amount of time checking proofs (and still possibly miss errors). Proof
assistants such as Coq provide proof terms that can be independently checked. To
trust all proof terms of theorems proven in Coq, one only needs to trust the underlying
proof theory and the implementation of the system checking the proof.

Manually checking “paper and pencil” (non-formalized) proofs is not a scalable
or practical technique for applications to software development in industry where fi-
nancial concerns may be prioritized over software correctness and safety. The area of
formal methods for software engineering is focused on (im)proving the correctness of
software. Even if we develop techniques to allow software developers to prove correct-
ness of software without needing expertise in the research area, we still need to be sure
that the languages in which the programs are defined cause the expected behaviour.

1

1. INTRODUCTION 2

We need a mechanized solution to studying programming language metatheory.
Toward this goal, the POPLmark challenge [1] was introduced to merge the con-

cerns of the proof theory and programming languages communities. It provides a set
of challenge problems to explore how to mechanize programming language metatheory
using a variety of systems and techniques and illustrates the importance of formal-
ized reasoning in programming language research. In fact, it is standard for papers
presented at programming language conferences to be accompanied by formal proofs
of the metatheory, again for reasons related to confidence in the correctness of the
work.

One approach to mechanize reasoning about programming languages involves
higher-order abstract syntax. This technique is used by Hybrid, the system that the
work in this thesis contributes to.

1.2 Higher-Order Abstract Syntax
Higher-order abstract syntax (HOAS) [20], also known as λ-tree syntax [17], is a
technique for representing formal systems, known as object logics (OLs), that we wish
to reason about. A variety of systems exist that implement a HOAS approach to
reasoning about OLs such as programming languages and logics. An early example
is the Twelf system [23]. HOAS simplifies reasoning about OLs in these systems by
allowing object-level name binding structures, also called binders, to be encoded in
the binding structures of the meta-language that the system is defined in.

As an example, we will illustrate a HOAS encoding of the untyped λ-calculus
(the OL) in a type theory (the meta-level) so that we can reason about it formally.
Function abstraction in λ-calculus is a binder because the name of a variable is bound
in the body of the abstraction. Let tm be the meta-level type of terms of the OL
encoding. Suppose that we have constants expressing the higher-order syntax of
terms, including app of type tm → tm → tm and abs of type (tm → tm) → tm.
Then abs represents the function abstraction construct of the OL, an object-level
binder, and it is encoded in a meta-level binder. For example, the λ-term λx.λy.x y
can be encoded as abs(λx . (abs(λy . (app x y)))). Note that tm cannot be defined
inductively because of the (underlined) negative occurrence of tm in the type of abs .

When the metalanguage is an appropriate λ-calculus, we can encode object-level
substitution and renaming as meta-level β-reduction and α-conversion, respectively.
This avoids the requirement of implementing infrastructure consisting of libraries of
definitions and lemmas to deal with issues surrounding binders and variable naming
when studying an OL.

1. INTRODUCTION 3

1.3 Hybrid
Coq is an implementation of a typed λ-calculus called the calculus of constructions.
Hybrid is implemented as a Coq library so the meta-language is a λ-calculus. A type
expr is defined for representing OL “programs” as meta-level terms. In Hybrid this
is implemented so that terms of type expr expand to a nameless representation of
λ-terms called de Bruijn indices [7]. Hybrid uses HOAS and object-level binders are
encoded in a newly introduced abstraction binder. This binder has type (expr →
expr) → expr . It can be used to directly express the syntax of OLs such as the
untyped λ-calculus example in Section 1.2.

An intermediate reasoning layer called a specification logic (SL) is added to in-
terface between the OL encoding and the layer implementing HOAS. Adding a SL
extends the class of OLs that we can reason about efficiently using a system support-
ing HOAS. The relationship between these levels is the reason Hybrid is considered a
two-level logical framework. This approach was introduced by McDowell and Miller
in [14] with the FOλ∆N logic. In such a system, the specification and (inductive)
meta-reasoning are done within a single system but at different levels. In Hybrid the
SL is defined as an inductive type in Coq, and OL judgments (including hypothetical
and parametric judgments) are encoded in the SL.

1.4 Specification Logic Metatheory
There are many features of Hybrid that help work toward the goal of efficiently
mechanizing programming language metatheory, but this thesis is focused on the SL
layer. Here we makes two contributions: an extension to the reasoning power of
Hybrid and new insight into proofs of properties of certain kinds of sequent calculi.

First, a new SL is implemented and structural properties of this logic are formal-
ized and proven in the Coq proof assistant. The new SL presented here is a sequent
calculus based on the logic of hereditary Harrop formulas as presented in [15]. We
prove that the standard structural rules of weakening, contraction, exchange and cut
are admissible in this logic. In proving admissibility of these rules, we do not have to
include them in the logic as axiomatic and we still get the benefits that they provide in
reasoning about OLs. The structural rules can then be used in proofs of OL theorems.
For example, if the OL is a typed functional programming language, then proving
subject reduction for this OL (i.e. that evaluation of expressions preserves typing)
requires the cut rule. See [8] for a detailed explanation of this example and subject
reduction proof. Implementing a new SL and proving the admissibility of structural
rules is a concrete extension to an existing computing tool (namely Hybrid) since it
improves the reasoning abilities of this system in a fully formalized way.

The second contribution is more theoretical and educational. We present a gen-
eralization of the specification logic and form of theorem statement to encapsulate

1. INTRODUCTION 4

the implemented SL and desired structural rules, respectively. We show how the im-
plemented SL can be instantiated from this generalized SL, so the results presented
for the generalized SL can be applied to, and provide guidance on, the proofs of SL
metatheory. The structural proofs are by induction, sometimes requiring mutual in-
ductions and nested inductions, so they can have many cases and details to manage.
This presentation allows us to see the structural proofs in a more condensed but still
comprehensive way. We are also able to gain a deeper understanding of these proofs;
the generalized SL helped us to partition cases for the original SL into classes with
the same proof structure and isolate the difficult cases. It is our hope that this pre-
sentation will give others insight into the kind of proofs we work through and that
this general framework may find some use in other applications.

1.5 Outline
This thesis is broken up into two parts: background and contributions. To understand
the research described here, it is necessary to first ensure that the reader understands
the logical foundations of the ambient reasoning system for this work (namely Coq),
the basics of Hybrid, and the development of the style of logic used for the new
SL. In Chapter 2 we review the type theory implemented by Coq and introduce
the reader to using it as a proof assistant. We present an overview of Hybrid in
Chapter 3. The final background chapter, Chapter 4, is on the logic of higher-order
hereditary Harrop formulas and will set the stage for the SL of this thesis. Next
we move to the contributions of this research. As stated above, this is focused on a
new intermediate reasoning logic for Hybrid. Chapter 5 presents this logic and its
metatheory is studied in Chapter 6. From here we abstract the specification logic of
Chapter 5 with a generalized specification logic in Chapter 7 and prove properties of
this logic in a general way in Chapter 8. We conclude in Chapter 9 with a review of
the results presented and look at related and future work.

The research presented in this thesis is published in [2]. The files of the Coq
formalization are available at www.eecs.uottawa.ca/~afelty/BattellThesis/.

Part I

Background

5

Chapter 2

Coq

Coq [3,24] is an implementation of the Calculus of Inductive Constructions (Cic), an
extension of the Calculus of Constructions (CoC) [6], a typed lambda calculus with
dependent types, polymorphism, and type operators. Cic extends CoC by adding
inductive types, which will be explored in Section 2.7. Originally created by Thierry
Coquand, CoC and its extensions have spurred the development of a variety of proof
assistants and interactive theorem proving systems currently used in the research
areas of automated deduction and formal methods for software engineering.

We will explore the Calculus of Constructions in Section 2.1, then see how it
captures the simply typed λ-calculus in Section 2.2. Next we look at reductions in
Section 2.3, followed by an exploration of the expressive power of CoC in Sections 2.4
and 2.5, where we will examine how the rules presented earlier in the chapter allow
dependent types, polymorphism, and type operators. We see how to use Coq as an
interactive proof assistant in Section 2.6 followed by information on inductive types
and writing inductive proofs in Section 2.7. The notation and style used to illustrate
the concepts follows the presentation in [3] and [24]. The discussion is motivated
by [3] and [6].

2.1 The Calculus of Constructions

2.1.1 Terms
The terms of CoC are defined by the following grammar:

t1, t2, t3 ::= Type i
| Set
| Prop
| xi

6

2. COQ 7

| t1 t2
| λx : t1.t2

| ∀x : t1, t2

| let x := t1 : t2 in t3

Terms of CoC include a collection of constants indexed by natural numbers
where for i ∈ N, Type i denotes the ith constant. Together with this collection, the
constants Set and Prop are called sorts, which can be viewed as types of types. In
the grammar, xi for all i ∈ N denotes a countable collection of variables. Application
is denoted by juxtaposition of terms. It is a binary operator that associates to the
left (e.g. we write (t1 t2) t3 as t1 t2 t3). Terms can also be λ-abstractions λx : t1.t2,
where x is a variable that is considered bound in t2, and t1 is considered the type
of variable x. It is also possible for terms to be universal quantifications where x is
again a variable of type t1 bound in t2. If x does not occur in t2, then we can write
this quantification as t1 → t2. The final construction in the term grammar above is
for terms denoting the definition of variable x to be t1 of type t2 locally bound in t3.
We will sometimes use parentheses in the binders for abstractions and quantification,
writing λ(x : t1).t2 and ∀(x : t1), t2 to make it easier for the reader to parse these
expressions.

Rules assigning types to terms will be discussed below. In CoC, there is no
syntactic difference between terms and types. We will use “term” and “type” inter-
changeably according to what is most reasonable for the current discussion.

CoC can be used both as a theorem proving system and a functional program-
ming language. Its type system allows for a correspondence to be observed between
theorem statements and types, and between proofs and terms. This is called the
Curry-Howard correspondence [12] and allows us to view proofs as programs. By the
Curry-Howard correspondence, the arrow notation can be understood simultaneously
as implication or the function type arrow, depending on what is appropriate for the
topic under consideration. It associates to the right, so we will usually write the type
t1 → (t2 → t3) as t1 → t2 → t3.

In the rest of this chapter, we will write t, T, u, or U for terms and types, possibly
with subscripts. We write x for variables, also possibly with subscripts.

2.1.2 Judgments
Once we are able to build terms of CoC, we want to reason about them, possibly
within some context of assumptions.

Definition 2.1. Context
A context in CoC is a list of variable declarations, written x : t to say variable x has

2. COQ 8

type t, and definitions, written x := t1 : t2 to say variable x has value t1 of type t2.
The context may be written as [d1; d2; . . .] to list the elements. We write [] for the
empty context and Γ :: (t1 : t2) for adding an element to the end of the list.

The description of contexts in CoC in [24] includes a global environment, written
E, along with the local context, written Γ. Both are lists of variable declarations and
definitions. In the presentation here we do not need to distinguish between global
and local assumptions, so we will have one context, usually written Γ.

Definition 2.2. Sequent, Judgment
A sequent Γ ` t : T is a judgment where Γ is the context and t and T are CoC terms.
We call the elements of the context antecedents (or assumptions or hypotheses) and
t : T is said to be a consequent. We write ` t : T as notation for [] ` t : T .

A sequent is notation representing a conditional assertion which may be true or
false. We want to be able to determine when such assertions hold. For this, we need
a set of inference rules to determine when a sequent is provable. The rules of CoC
are in Figure 2.1.

Definition 2.3. Derivation, Valid/Provable Sequent
A tree built using the rules of Figure 2.1 with Γ ` t : T at the root and Ax-Prop,
Ax-Set, Ax-Type, or Var at the leaves is a derivation of Γ ` t : T . If there is a
derivation of Γ ` t : T , we say this sequent is valid or provable. We also say that t
has type T in Γ or just t has type T when Γ is empty.

For terms t and T and variable x, the notation T{x/t} denotes substitution,
meaning the operation that replaces occurrences of x in T with t, with the usual
renaming of bound variables to avoid instances of free variables becoming bound.
The rules Ax-Prop, Ax-Set, and Ax-Type are axioms that build the hierarchy of the
sorts into the logic. The Var rule allows a branch of a derivation to be completed
by showing the consequent of a sequent to be present in the context. Here we have
omitted a premise requiring that the context is well-formed and the rules for building
well-formed contexts (see [24] for details); informally, we understand this to mean
that additions to the context are well-typed according to the rules of Figure 2.1. The
Lam and App rules are the standard rules for building terms of the typed λ-calculus.

Definition 2.4. Dependent Product
A term of the form ∀t : T, U is called a dependent product.

Notice the Prod rules are all for building dependent products. The notation
t1 ≤βδιζ t2 in rule Conv is to say t1 is a subtype of t2 and will be described in

2. COQ 9

Γ ` Prop : Type0
Ax− Prop

Γ ` Set : Type0
Ax− Set

Γ ` Type i : Type i+1

Ax− Type
x : T ∈ Γ (or x := t : T ∈ Γ for some t)

Γ ` x : T
V ar

Γ ` ∀(x : T), U : s Γ :: (x : T) ` t : U

Γ ` λ(x : T).t : ∀(x : T), U
Lam

Γ ` t : ∀(x : U), T Γ ` u : U

Γ ` (t u) : T{x/u} App

Γ ` t : T Γ :: (x := t : T) ` u : U

Γ ` let x := t : T in u : U{x/t} Let

Γ ` T : s s ∈ {Set ,Prop,Type i} Γ :: (x : T) ` U : Prop

Γ ` ∀(x : T), U : Prop
Prod− Prop

Γ ` T : s s ∈ {Set ,Prop} Γ :: (x : T) ` U : Set

Γ ` ∀(x : T), U : Set
Prod− Set

Γ ` T : Type i i ≤ k Γ :: (x : T) ` U : Typej j ≤ k

Γ ` ∀(x : T), U : Typek
Prod− Type

Γ ` U : s s ∈ {Set ,Prop,Type i} Γ ` t : T Γ ` T ≤βδιζ U

Γ ` t : U
Conv

Figure 2.1: Rules of CoC

2. COQ 10

Section 2.3 when discussing convertibility. The various Prod rules, together with the
Conv rule, are what allow CoC to have such an expressive type system; they allow
simple types, dependent types, polymorphism, and higher-order types as we will see
in the coming sections.

Definition 2.5. Inhabited-in-Context
Let Γ be a context and T a type. We say that T is inhabited in context Γ if there
exists t such that Γ ` t : T is provable.

The type system of CoC allows for two different approaches to be taken when
using the language; it can be used as a functional programming language or for
formalized reasoning via the two sorts Set and Prop, respectively.

Definition 2.6. Specification, Realization
If Γ ` T : Set is provable, then T is a specification. If Γ ` t : T is provable, then t is
a realization of the specification T .

We can think of a specification as the type of a function and a realization as its
implementation. For example, the identity function on natural numbers has specifi-
cation N → N and a realization of this specification is the function λ(x : N) . x. Note
that we have not yet defined N in CoC (see below).

Definition 2.7. Formula, Proof Object
If Γ ` T : Prop is provable, then T is a formula. If Γ ` t : T is provable, then T is a
theorem and t is a proof object representing a proof of theorem T .

In the next few sections, as we explore the expressive power of the CoC type
system, we will encounter some examples that make use of the type N of natural
numbers. This type is inductive and cannot be properly defined until Section 2.7,
but it is useful in illustrating earlier concepts. For this reason an informal definition
of this type is given here as well as some (later justified) results about it.

The type N is an inductive type whose “elements” are constructed from the
following rules:

• the number 0 has type N

• if n has type N, than the successor of n (written S n) has type N

In addition, in the examples here we make use of the fact that for any context Γ, the
sequent Γ ` N : Set is provable.

2. COQ 11

2.2 Simply Typed Lambda Calculus
From the rules of Figure 2.1, we can see that CoC encompasses the simply-typed
λ-calculus. These rules allow the construction of simple types. This includes atomic
types, referred to by their identifier (e.g. N, Z), and arrow types A → B where A and
B are simple types and → associates to the right. Observe that by the Curry-Howard
correspondence we may view A → B as either a specification (function type) or a
theorem (implication), depending on the sort of the arrow type. In either case, if
t : A → B, then t maps either data of type A, or proofs of A, to data of type B, or
proofs of B, respectively.

Abstractions and applications for simple types are build using the rules Lam and
App of Figure 2.1, where the bound variable in any universal quantification does not
occur in its body. The rule Lam makes it possible to construct a term of type A → B,
but we also need to be able to build this type. This is accomplished via the product
rule for simple types:

Γ ` A : s Γ ` B : s
Γ ` A → B : s

Prod-ST

where s ∈ {Set ,Prop}.
Notice the rule Prod-ST is an instance of rule Prod-Set with s = Set or Prod-

Prop with s = Prop. Again note that A → B is shorthand for ∀(x : A), B (given x
does not occur in B).

2.3 Reductions
The calculus of constructions has the strong normalization property so all terms of
CoC will be reduced to an irreducible form by any sequence of reductions. We use
the notation t .βδιζ s to say that a term t evaluates to a term s by some sequence of
δ-, β-, ι-, and ζ-reductions (described below).

δ-Reduction replaces an identifier with its definition. For example, if we have
defined f := λ(x : Type0) . x : Type0 → Type0, then f Set .δ Set .

β-Reduction evaluates a term acquired by the App rule by replacing all occurrences
of the bound variable in the body of the abstraction with the term the abstraction is
applied to using standard substitution rules; defined as (λ(x : T) . t) u .β t{x/u}.

ι-Reduction handles computations in recursive programs; it will not be used in
the examples presented.

2. COQ 12

1. if Γ ` t =βδιζ u then Γ ` t ≤βδιζ u

2. for all i, j ∈ N, if i ≤ j then Γ ` Type i ≤βδιζ Typej

3. for all i ∈ N, Γ ` Set ≤βδιζ Type i

4. Γ ` Prop ≤βδιζ Set and for all i ∈ N, Γ ` Prop ≤βδιζ Type i

5. if Γ ` T =βδιζ U and Γ :: (x : T) ` T ′ ≤βδιζ U ′ then Γ ` ∀x : T, T ′ ≤βδιζ ∀x :
U,U ′

Figure 2.2: Subtyping in CoC

ζ-Reduction deals with converting local bindings; it will not be used in the exam-
ples presented.

2.3.1 Convertibility
We say two terms t1 and t2 are α-equivalent, written t1 ∼=α t2, if they are the same
term up to renaming of bound variables.

Definition 2.8. βδιζ-Convertible
Two terms are considered equivalent, or βδιζ-convertible, if they can be reduced to
α-equivalent terms by the reductions given above. When terms t1 and t2 are βδιζ-
convertible, we write t1 =βδιζ t2.

Symbolically, definition 2.8 says for terms t1, t2, u1, and u2, if t1 .βδιζ u1 and
t2 .βδιζ u2 and u1

∼=α u2, then t1 =βδιζ t2.
From convertibility we can develop the notion of subtyping in CoC; ≤βδιζ is

a preorder on the collection of types in the type hierarchy. This relation is defined
inductively in Figure 2.2. This gives us a conversion rule for terms, the rule Conv of
Figure 2.1.

2.4 Dependent Types
A dependent type is the result of applying a function to appropriate expressions; in
particular, it is the reduced form of a function applied to an argument of type Set or
Prop. By definitions 2.6 and 2.7, a dependent type is a term of CoC that depends on
a choice of a realization of a specification (for parametric types) or a choice of proof
object (in the logical case).

2. COQ 13

Example 2.1. Tuple as a Dependent Type
Let n be a term of type N. By definition 2.6, n is a realization of the specification N.
The type of tuples of size n, call this tuple, depends on the value of n and has type
N → Set . tuple 1 is a dependent type of one-tuples.

Note that the type of a dependent type is a dependent product (see definition 2.4).
We need to be able to build the dependent products that will allow us to define
the above example. We can use a derived rule, which we will call Prod-Dep, for
building dependent products that can then be used to build dependent types. Let
s ∈ {Set ,Prop}. This rule is:

Γ ` T : s Γ :: (x : T) ` U : Type i
Γ ` ∀(x : T), U : Type i

Prod-Dep

We get this rule from the following derivation tree:

Γ ` Type0 : Type1
Ax-Type

Γ ` T : s Γ ` s ≤βδιζ Type0
*

Γ ` T : Type0
Conv

Γ :: (x : T) ` U : Typei

Γ ` ∀(x : T), U : Typei
Prod-Type

The leaf labeled with * is proven by clauses 3 and 4 in the definition of the subtype
relation in Figure 2.2.

Using Prod-Dep it is possible to build a term ∀(x : T), U of type Type i, where x
may occur freely in U and, most importantly for the contents of this section, T : s
where s ∈ {Set ,Prop}.

Example 2.2. Parametrized Types
If s is Set and U is Set , then the rule Prod-Dep can be used to construct the type
of parametrized types. Consider the first example above, the type of tuples of size
n, where n is either a variable in the context or a concrete value. We will define
the name of this type to be tuple. Then the type of tuple is N → Set and the
dependent type is an instantiation of this type with some value n of type N. The
sequent Γ ` N → Set : Type i is proven with Prod-Type.

Example 2.3. Predicates
Let s be Set and be U be Prop. Then the rule Prod-Dep can be used to build the
type of unary predicates T → Prop where (from the rule) we also know that T has
type Set . We can extend this to n-ary predicates by repeated uses of the rule.

2.5 Higher-Order Types
For all i ∈ N, types T with type Type i are considered here to be higher-order types
since elements t of type T are types. For example, N has type Set , which has type

2. COQ 14

Type0. Traditionally we can think of N as a type and elements that inhabit it as
values of that type. Dependent products with quantification over higher-order types
are built with the rule Prod-Type of Figure 2.1. In this section we will see how
polymorphism and type operators are permitted in Coq using the Prod-Type rule and
higher-order types.

2.5.1 Polymorphism
Informally, a polymorphic function is a function with a type parameter. Working
toward an example of such a function, consider a unary function double on natural
numbers that returns the argument multiplied by two. Note that we do not define this
function here as this requires concepts explained later, and the focus of this discussion
is on the type of such a function. double has type N → N. In fact, all unary functions
on natural numbers can be specified with type N → N. Then a function that iterates
such unary functions on N, call this iter_nat , will have type (N → N) → N → N → N,
where the first argument is the function to iterate and the second argument (which is
underlined) is the number of times to iterate the function argument. The definition
of iter_nat does not make use of the fact that the unary functions are over N because
it simply repeatedly applies the function the number of times specified by the second
(underlined) argument. So the logic of nat_iter should be reusable to iterate unary
functions over any type t of type Set . We want to define a function, say iter , that
will accomplish this. iter will have type ∀(t : Set), (t → t) → N → t → t. We can
show that this is a valid type in CoC.

Let T be Set , then we can use the Prod-Type rule with i = j = k = 0 to build
specifications of polymorphic functions:

Γ ` Set : Type0 Γ :: (t : Set) ` U : Type0
Γ ` ∀(t : Set), U : Type0

Prod-Type

Using this rule, we prove below that ∀t : Set , (t → t) → N → t → t has type
Type0 in CoC. In the course of this proof we will also show that t : Set ` (t → t) →
N → t → t : Set is a valid sequent. By the terminology of definition 2.6, this means
we can specify a function for the n-th iterate of a unary function on some type t with
sort Set , where n is the natural number argument to the function iter .

Claim: ` ∀t : Set , (t → t) → N → t → t : Type0 is provable.
Proof:

This proof will be presented from axioms and work towards the goal where most
steps use some version of a Prod rule. We show the sequent in the above paragraph
holds as justification that we can construct the type of specifications of polymorphic

2. COQ 15

functions. To finish the proof and show the claim above we will need to use the Conv
rule toward the end, since we are building a term of type Type0.

For any Γ with t : Set ∈ Γ, the Var rule is used to show that the sequent
Γ ` t : Set is provable. So the following sequents are valid:

[t : Set] ` t : Set (2.1)
[t : Set ; t : Set] ` t : Set (2.2)

[t : Set ;H1 : t → t;H2 : N] ` t : Set (2.3)
[t : Set ;H1 : t → t;H2 : N; t : Set] ` t : Set (2.4)

By (2.1) and (2.2) above and the rule Prod-Set, we derive the sequent

[t : Set] ` (t → t) : Set . (2.5)

The type N is defined to have type Set , so

[t : Set ;H1 : t → t] ` N : Set (2.6)

is also valid. By (2.3) and (2.4) above and the rule Prod-Set, we derive the sequent

[t : Set ;H1 : t → t;H2 : N] ` t → t : Set . (2.7)

So we can use the Prod-Set rule with (2.6) and (2.7) to show that

[t : Set ;H1 : t → t] ` N → t → t : Set (2.8)

is provable. Now Prod-Set applied to (2.5) and (2.8) gives us

[t : Set] ` (t → t) → N → t → t : Set . (2.9)

We have shown in (2.9) that we can construct the specification of a polymorphic
function for iterating unary functions of type t : Set . Continuing the proof, the
sequent

[t : Set] ` Type0 : Type1 (2.10)

is valid by Ax-Type. By the definition of ≤βδιζ , the sequent

[t : Set] ` Set ≤βδιζ Type0 (2.11)

is also valid. Applying Conv to (2.10), (2.9), and (2.11) gives

[t : Set] ` (t → t) → N → t → t : Type0. (2.12)

2. COQ 16

By the axiom Ax-Set, the sequent

` Set : Type0 (2.13)

is valid. Finally, we use the rule Prod-Type a final time with (2.13) and (2.12) to show
that

` ∀(t : Set), (t → t) → N → t → t : Type0 (2.14)

is derivable, as claimed.

2.5.2 Type Operators
Informally, a type operator is a type built from other types. The Prod-Type rule
is what also allows us to express type operators in CoC because its conclusion is a
typing judgment for a dependent product with quantification over higher-order types.

Example 2.4. Logical Connectives
Let T be Prop and i = j = k = 0, then we have a rule to build the type of logical
connectives.

Γ ` Prop : Type0 Γ :: (t : Prop) ` U : Type0
Γ ` ∀t : Prop, U : Type0

Prod-Type

The infix binary connectives representing “or” and “and” can be declared as
∨ : Prop → Prop → Prop and ∧ : Prop → Prop → Prop, respectively. Note that we
can only declare these types at this time, meaning we see here how to construct the
types of these operators. This is necessary before we see how to define (and derive
the type of) definitions. Inductive types will be discussed in Section 2.7.

Claim: ` Prop → Prop → Prop : Type0 is provable.
Proof:

This proof is illustrated by the derivation tree below. First, we rewrite the
consequent of the sequent in the form that more easily visually matches the conclusion
of the Prod-Type rule. Recall that the arrow notation A → B is a simplified notation
for ∀(x : A), B. So we can rewrite Prop → Prop → Prop as ∀(t1 : Prop),∀(t2 :
Prop), P rop.

` Prop : Type0
*

[t1 : Prop] ` Prop : Type0
*

[t1 : Prop; t2 : Prop] ` Prop : Type0
*

[t1 : Prop] ` ∀(t2 : Prop),Prop : Type0
Prod-Type

` ∀(t1 : Prop),∀(t2 : Prop),Prop : Type0
Prod-Type

2. COQ 17

All three leaves are marked with * and proven by clause 4 in the definition of
the subtype relation in Figure 2.2.

2.6 Interactive Proving in Coq
For the remainder of this chapter we are considering the Coq implementation of Cic
and use of this system. Now when we talk about built-in language types, tactics,
commands, or define types in the Coq syntax, we will use teletype font rather than
italicized math font.

As described in Section 2.1, to prove a statement P where Γ ` P : Prop is
provable, we construct (or find) a proof object t through a derivation of Γ ` t : P (i.e.
according to definition 2.5, show that P is inhabited by t in Γ). By definition 2.7,
proof object t represents a proof of theorem P . As an alternative to “defining” the
proof object t and allowing the type checker to verify that t is a proof term for P ,
Coq provides an interactive proof mode where tactics are used to interactively build
t. These proofs start with the theorem statement P as the goal and work backward
reducing the goal to subgoals at each step and eventually to axioms. Once all goals
have been discharged, the system builds the proof term t. The names of some of these
tactics will be mentioned throughout this document, so we collect descriptions of the
relevant tactics at the end of this section.

2.6.1 Proof State
The interactive proof engine of Coq can be used to build a derivation in CoC in
a bottom-up fashion, meaning we construct the proof tree for a sequent Γ ` t : P
beginning at the root. In fact, we are constructing both the proof tree and t, showing
that P is inhabited.

Definition 2.9. Proof State
Let Γ be the context [H1 : P1; . . . ;Hk : Pk] and let P be a formula that we want to
show is inhabited in Γ by a proof object. The pair (Γ, P) is a proof state. We call P
a goal. We say that a proof state (Γ, P) is complete when there exists a t such that
t : P ∈ Γ or P .βδιζ >. A proof state that is not complete is incomplete.

Visually we will write a proof state in a vertical form with the assumptions in
the context above a horizontal line and the goal below. For example:

2. COQ 18

H1 : P1

...
Hk : Pk

P

Unlike in Coq, when we have multiple incomplete proof states corresponding to
leaves in a partial derivation and goals G1, . . . , Gj have the same context of assump-
tions, we will write them all below the horizontal line, separated by commas.

H1 : P1

...
Hk : Pk

G1, . . . , Gj

We also sometimes refer to the goal as a subgoal as a reminder that it was
acquired from a previous goal and there may be other subgoals.

Example 2.5. Interactive Proof
To illustrate the Coq interactive theorem proving system, we will prove the con-
junction elimination rule P ∧Q

P
∧e1 . Note that in Coq, conjunction is defined as

an inductive type. Since we look at inductive types and inductive reasoning in Coq
in Section 2.7 and we do not have to use any inductive reasoning in this proof, we
elide the details of inductive type definitions here. The single rule for constructing
conjunctions is

∀(P Q : Prop), P → Q → P ∧Q

which says for all propositions P and Q, if we have a proof of P (i.e. a term of type
P) and if we have a proof of Q (i.e. a term of type Q), then we have a proof of P ∧Q.

Claim: ` ∀(P Q : Prop), P ∧Q → P

Proof: We begin this proof at the root of the proof tree. Initially the context of
assumptions is empty.

∀(P Q : Prop), P ∧Q → P

2. COQ 19

We use the intros tactic, which applies the Lam rule of Figure 2.1 in a backward
direction as many times as possible, effectively moving the quantified variable decla-
rations (including anything to the left of →) in the goal to the context of assumptions
of the proof state. Recall that a goal corresponds to the type on the right of a colon
in the consequent of a CoC sequent. The intros tactic automatically solves the left
premise of each application of the Lam rule (it involves only simple type checking),
and presents the type on the right of the colon in the consequent of the last right
premise as the new subgoal. At each step of a proof in Coq, the terms on the left of
the colon are constructed internally and not displayed. Once a proof is completed,
these terms are used to build the proof object for the theorem we started with, which
can then be displayed at the user’s request. Each application of the Lam rule in a
backward direction introduces a new hypothesis into the context of assumptions of
the proof state.

P : Prop
Q : Prop
H : P ∧Q

P

Now we use the inversion tactic on H. The inversion tactic exploits the properties
of injectivity and disjointedness of the constructors of an inductive type. Since we
have not yet explained inductive types, it suffices here to say by the definition of
conjunction and given that assumption H is a witness of the conjunction P ∧ Q, it
must be the case that we can also assume both P and Q.

P : Prop
Q : Prop
H : P ∧Q

H1 : P

H2 : Q

P

Now the goal matches H1 and we finish this proof with assumption, which is a tactic
that simply applies the Var rule of Figure 2.1.

2. COQ 20

2.6.2 Some Coq Tactics, Tacticals, and Commands
A tactical is an operator that takes tactic arguments to build a tactic. Below are Coq
tactics, tacticals, and commands used in the proofs in this thesis. These have been
described using some terminology introduced earlier as well as informal descriptions.
More information can be found in the Coq Reference Manual [24].

intros
introduces variables and assumptions from the goal to the context of assump-
tions; a meta-level backward reasoning step of implication introduction; optional
arguments assign names to the variables and assumptions introduced, otherwise
default names are used

apply
used either for backward reasoning, also known as backchaining, on the goal,
or forward reasoning, also known as forward chaining, on assumptions in the
context; to backchain on the goal G over some P : t1 -> t2 where G matches
t2 we write apply P and the new goal is t1; to forward chain with some H :
t with t matching t1 in the context over the same P we write apply P in H
and assumption H is now t2 (see the proofs in Chapters 6 and 8 for examples
of use)

constructor
a specialized form of apply which applies an appropriate constructor for the
type of the goal without naming the constructor; constructors are the names of
the clauses of an inductive definition as will be described in Section 2.7; proofs
using this tactic can be seen in Chapters 6 and 8

reflexivity
solves a goal when it is an equality with both sides βδιζ-equivalent (see defini-
tion 2.8)

simpl
applies βι-reduction then expands constants from their definitions and again
tries βι-reduction; by default this tactic is used on the goal but it can be used
on an element H : t in the context by writing simpl in H to simplify t

rewrite
rewrites from an equality (replacing all occurrences in the proof state of one side
of the equality with the other) that is either an assumption, a local definition,
or a theorem; optionally use either <- or -> to give the rewrite direction

inversion
all conditions derived for each constructor of the type of the argument are new

2. COQ 21

assumptions; for each constructor matched, the proof has one new subgoal with
the premises of that clause as new assumptions in the context (see example 2.5)

induction
applies the appropriate induction principle for the type we induct over; see
Section 2.7 for a discussion on induction in Coq

assumption
used when the goal matches an assumption to complete the proof of a goal

auto
attempts to prove the goal automatically using results in a hints database

Hint
a Coq command; using Hint Resolve theorem_name adds theorem_name to
a list of hints used by auto

try
a tactical that tries to apply the tactic given as an argument and if it fails does
not cause an error

;
applies tactics in sequence

Many of the tactics can be replaced with the same tactic name prefixed with the
letter e (e.g. eapply). This provides placeholders of appropriate type that act as
logical variables that can be filled in by unification. They are used where we would
otherwise need to provide a witness in cases of application as backward reasoning on
the goal.

2.7 Induction in Coq
Cic extends CoC by adding inductive type definitions. An inductive type is a type
with constructors that may take arguments of that type, so it is self-referential. For
example, the natural number type N is defined inductively in Coq as:

Inductive nat : Set :=
| Z : nat
| S : nat -> nat.

In Coq, we declare that we are defining an inductive type with the keyword Inductive.
The name of the type is nat and its type is Set. This inductive type has two con-
structors, Z (to represent zero) and S (to represent the successor function). We can
understand this type as saying that any natural number can be constructed either as

2. COQ 22

nat_ind : ∀(P : nat → Prop),
(∗Z∗) P Z →
(∗S∗) (∀(m : nat), P m → P (S m)) →

∀(n : nat), P n

Figure 2.3: Induction principle for type nat

zero or the successor of some other natural number and these are the only two ways
to construct natural numbers.

From an inductive type, Coq automatically generates an induction principle
whose target type is Prop. To prove a property of all elements of a type, proofs
using these induction principles have one subcase for each constructor of the type.
The induction principle for nat is in Figure 2.3, where P is the property to be proven
of all natural numbers. We sometimes refer to P as the induction property.

Constructors that have recursive occurrences of the type being defined will have
corresponding induction subcases with induction hypotheses. An example of such a
constructor is S in the definition of nat because it requires a nat argument. Notice
the corresponding induction subcase is to prove ∀(m : nat), P m → P (S m). The
formula P m is an induction hypothesis.

Now that we have an inductive type defined in Coq, namely nat, we can define
functions by primitive recursion over this inductive type. This is done using the
match . . . with . . . end construction. To define a recursive function over n of type nat,
we need to consider the possible constructions of n. From the definition of nat, we
see that either n = Z or n = Sm where m has type nat. We need to decide what
happens in either case. Using the Coq syntax, we can write a primitive recursive
function over n as:

Fixpoint recursive_nat (n : nat) :=
match n with
| Z => f1
| S m => f2
end.

where Fixpoint is a keyword for defining recursive functions and recursive_nat is
the function name. If n evaluates to Z, then the result is f1. If n evaluates to S m'
for some m' of type nat, then the result is f2 with m replaced by m' by ι-reduction.

Example 2.6. Proof by Induction
We will see how to prove the statement ∀(n : nat), n = n + Z by induction in Coq,

2. COQ 23

also pointing out the induction property used by the induction principle. This proof
uses the definition of +, which is notation for plus, in reductions to irreducible terms.

Using the match . . . with . . . end construction described above, plus n m is de-
fined recursively with cases on the structure of n as:

Fixpoint plus (n m : nat) :=
match n with
| Z => m
| S n' => S (plus n' m)
end.

We write n + m as infix notation for plus n m

Claim: ` ∀(n : nat), n = n+ Z

Proof:
This proof is completed bottom-up, so the initial proof state is the node at the

root of the proof tree. The context is empty and the goal is the statement that we
wish to prove.

∀(n : nat), n = n+ Z

The tactic induction n is used to backchain with the induction principle for natural
numbers in Figure 2.3. This proof has two subcases, one corresponding to each
constructor of nat. These are to prove P Z and ∀(m : nat), P m → P (S m) where

P := λ(n : nat) . n = n+ Z

is the induction property.
We will first prove P Z (usually called the “base case”):

Z = Z + Z

This is done by reducing Z+Z to Z by the first branch in the definition of + and then
with reflexivity.

To complete this proof we need to show ∀(m : nat), P m → P (S m) (the
“inductive step”):

∀(m : nat),m = m+ Z → S m = (S m) + Z

2. COQ 24

We make introductions into the context with intros.

m : nat
H : m = m+ Z

S m = (S m) + Z

The right side of the goal equality can be reduced by simpl, using the second branch
in the definition of +.

m : nat
H : m = m+ Z

S m = S (m+ Z)

Now we can use rewrite <- H to replace m+ Z with m on the right side of the goal
equality.

m : nat
H : m = m+ Z

S m = S m

The goal is an equality with both sides equal, so this proof is finished with reflexivity.

2.7.1 Mutually Inductive Types
A type may be built using types that are already defined. When two types have
dependencies on each other, they cannot both be defined before the other. In this
case we define a mutually inductive type. An example of where this is useful is in
defining two types even and odd which are unary relations to identify even and odd
natural numbers, respectively. In Coq these can be defined as:

Inductive even : nat -> Prop :=
| e_Z : even Z
| e_S : forall (n : nat), odd n -> even (S n)
with odd : nat -> Prop :=
| o_S : forall (n : nat), even n -> odd (S n).

2. COQ 25

Intuitively this says that Z (meaning zero) is even and the successor of any odd
number is even. Also, the successor of any even number is odd.

Coq automatically generates an induction principle for each of these types. For
even, this is

even_ind : ∀(P : nat → Prop),
(∗e_Z∗) (P Z) →
(∗e_S∗) (∀(n : nat), odd n → P (S n)) →

∀(n : nat), even n → P n

where P is the induction property for even natural numbers. Notice that a proof using
this induction principle will have one subcase for each constructor of even. Also, in
the case corresponding to the constructor e_S, there is no induction hypothesis about
the premise odd n. So for some types and some theorems to prove, the generated
induction principle is insufficient.

The command Scheme may be used to generate induction principles over mutually
inductive types. These induction principles will have subcases for every constructor
in every type in the mutually inductive type. Continuing the example above, we can
get the following mutual induction principle over even:

even_mutind : ∀(P1 P2 : nat → Prop),
(∗e_Z∗) (P1 Z) →
(∗e_S∗) (∀(n : nat), odd n → P2 n → P1 (S n)) →
(∗o_S∗) (∀(n : nat), even n → P1 n → P2 (S n)) →

∀(n : nat), even n → P1 n

This induction principle has more cases but provides more powerful assumptions in
each inductive case. Notice that now the subcase corresponding to the constructor e_S
also has the induction hypothesis P2 n and we also have a subcase for the constructor
o_S.

2.8 Conclusion
The CoC inference system implements a type checker, so it can be used both for proof
verification and checking that a function satisfies its specification (i.e. it is a realiza-
tion of the required type). It can also be used to construct a proof. By appropriately
instantiating the Prod rule, the system is made more expressive as a functional lan-
guage and theorem proving system while still maintaining many desirable properties
including strong normalization and consistency.

Coq can be used to prove formalized statements. A large library of tactics are
available to assist in proof development. Since Coq is an implementation of Cic, it is

2. COQ 26

possible to define inductive types and then prove statements by induction over these
types using automatically generated induction principles.

The upcoming presentation will make use of all of the concepts just presented:
the rich type system of Cic, interactive proofs, and inductive types, culminating in
proofs by structural induction over mutually inductive dependent types.

Chapter 3

Hybrid

In this chapter each layer of Hybrid will be explored to provide more intuition on how
it is constructed and used. This explanation will be driven by an analogy, for use as
an aid to both memory and understanding of the system.

The orientation of the layers is as in Figure 3.1. We will first consider the
top layer, the object logic, in Section 3.1 with an example to motivate what we are
trying to accomplish. Next we will consider each layer bottom-up, beginning with the
ambient logic in Section 3.2, then the higher-order abstract syntax layer in Section 3.3.
Continuing up the stack we next come to the specification logic. Since much of the
work presented later is on the implementation and metatheory of the specification
logic required for our motivating example of Section 3.1, we will not see details of the
specification logic here. Rather, Section 3.4 will illustrate the benefit a specification
logic adds to Hybrid and reinforce its necessity. This will be followed by another look
at the object logic in Section 3.5, but this time we will be focusing on implementation
details with the rest of the system in place. To conclude this chapter, Section 3.6 will

Figure 3.1: High-Level Hybrid Structure

27

3. HYBRID 28

compare Hybrid with alternative architectures for systems intended to reason about
object logics using HOAS.

3.1 Object Logics
Suppose we wish to study flowers and create things
with them. Then we need to be able to grow flowers.

Suppose we wish to prove something about a programming language or logic,
the OL. This language will have rules expressing syntax and semantics that we need
to encode in some proof assistant so that we can reason about it. It is also necessary
to define the judgments of this language so that we can make claims about the OL.

Example 3.1. Object Logic: Equivalence of Named and Nameless λ-
terms
We consider one of the examples presented in [25]. Following the presentation there,
we can define a syntax and rules expressing direct and de Bruijn representations of
untyped λ-terms. By direct we mean the standard notation for λ-terms where ab-
stractions reference a named variable that may be used in the body of the abstraction.
De Bruijn indices [7] are a nameless representation of λ-terms where rather than using
variable names, a natural number is used for occurrences of a variable.

Let n represent a natural number, x a variable, and e and d represent direct and
de Bruijn representations, respectively. Then the following are grammars for these
λ-terms:

e ::= x | λx.e | e e

d ::= n | λd | d d

A natural number n in the grammar for de Bruijn terms d serves as a pointer to the
abstraction bounding that variable. This representation of λ-terms is more efficient
for computation as we can avoid issues surrounding bound variable names. The λ-
term λx.λy.x y can be written using de Bruijn indices as λ (λ (2 1)). The number
2 refers to the outer binder (it is contained in two abstractions) and 1 refers to the
inner binder.

An example property we might want to prove is that these two representations
are equivalent (or seen another way, to construct equivalent λ-terms in these different
forms). This logic has a judgment to say that λ-term e is equivalent to de Bruijn term
d at depth n, written e ≡n d. There are three inference rules expressing equivalence
of these two kinds of terms, one for each of application, abstraction, and variables,
seen below.

Γ ` e1 ≡n d1 Γ ` e2 ≡n d2
Γ ` e1 e2 ≡n d1 d2

hodb_app

3. HYBRID 29

Γ, x ≡n+k k ` e ≡n+1 d

Γ ` λx.e ≡n λd
hodb_abs

x ≡n+k k ∈ Γ

Γ ` x ≡n+k k
hodb_var

Applications in the two notations are considered equivalent under n abstractions
if their corresponding components are. The rule hodb_abs is more complicated to
understand due to an additional assumption in the context of the premise of the rule.
Informally, this rule says if whenever assuming variable x is equivalent to index k at
depth n+ k it can be shown that the bodies of the λ-terms e and d are equivalent at
depth n + 1, then we can conclude that the abstractions λx.e and λd are equivalent
at depth n. As an illustration of how to use this system, we will see how to prove
` λx.λy.x y ≡0 λ (λ (2 1)) (i.e. these two λ-terms are equivalent under zero additional
abstractions).

Claim: ` λx.λy.x y ≡0 λ (λ (2 1))
Proof:

Observe that by the hodb_var rule, both sequents below are provable.

x ≡2 2, y ≡2 1 ` x ≡2 2 (3.1)
x ≡2 2, y ≡2 1 ` y ≡2 1 (3.2)

This requires n = 0 and k = 2 in (3.1) and n = k = 1 in (3.2). Using the rule
hodb_app with (3.1) and (3.2) we derive the sequent

x ≡2 2, y ≡2 1 ` x y ≡2 2 1 (3.3)

Reviewing our claim, we are proving an equivalence of abstractions. The hodb_abs
rule is used on (3.3) with k = 1.

x ≡2 2 ` λy.x y ≡1 λ (2 1) (3.4)

We apply hodb_abs again, this time with k = 2.

` λx.λy.x y ≡0 λ (λ (2 1)) (3.5)

We have derived the sequent claimed provable, so this proof is complete.

Notice that the λ on the left of the equivalence in the conclusion of the rule
hodb_abs is a binding operator. This observation will be important when we see
how to represent untyped λ-terms using HOAS in Hybrid in Section 3.3 and then
implement this OL in Section 3.5.

3. HYBRID 30

3.2 Ambient Logic
We can plant seeds in the ground and use the natural
resources around us to reach our goal. The sun will
provide energy and rain will give water.

The ambient logic (also known as the reasoning logic or the meta-meta-logic) is
the layer of the system that everything else is defined in. It is an implementation
of a logic and so has its own reasoning rules and allows us to define other reasoning
systems within it. In our case, this is Cic and its implementation in Coq. This is
the lowest reasoning level we consider carefully as part of our system; we will not be
concerned with lower-level details of the implementation of Cic or its compilation.
Chapter 2 covered all aspects of Coq, the ambient logic of Hybrid, that are necessary
for understanding the contributions later in this thesis.

Existing theorem proving systems are an ideal tool to allow a language and its
judgments to be encoded without building extra infrastructure. Hybrid is a Coq
library (a collection of Coq files), so it is relatively easy to make modular updates to
the system and to add new intermediate reasoning layers called specification logics,
as will be explained in Section 3.4. Hybrid can also make use of the inductive and
interactive reasoning tools of Coq as well as existing Coq libraries.

3.3 Representing Higher-Order Abstract Syntax in
Hybrid

As our aspirations continue to grow, we find it diffi-
cult to scale up our flower production. When the rain
doesn’t fall as we require, we manually make up for
the shortfall. The task of watering every plant ev-
ery day is tedious. A dedicated plot of land with an
organized arrangement and an irrigation system is a
solution to this problem.

Many tedious computations are necessary for each encoding of an OL with bind-
ing structures. Examples include fresh name generation and capture-avoiding substi-
tution. Since Hybrid is implemented in an ambient logic that is a typed λ-calculus,
the technique of higher-order abstract syntax (HOAS) can be used for representing
OL expressions. The idea is to use the binder of λ-calculus, function abstraction, to
represent all OL binding operators. Using HOAS one can avoid implementing logic
to reason about variable naming concepts, thus inheriting the meta-level solutions to
these challenges. In addition, OL renaming and substitution are handled as meta-level
α-conversion and β-reduction, respectively.

3. HYBRID 31

Inductive expr : Set :=
| CON : con -> expr
| VAR : var -> expr
| BND : bnd -> expr
| APP : expr -> expr -> expr
| ABS : expr -> expr.

Figure 3.2: Terms in Hybrid

At this level we have a type expr (see Figure 3.2) encoding a de Bruijn index
version of the λ-calculus designed to be used to represent OL syntax. A parameter
con is a placeholder for OL constants, to be defined for each OL. We define var and
bnd to be the natural numbers. Hybrid expressions (VAR i) and (BND j) represent
object-level free and bound variables, respectively. The constructor APP is used to
build applications and ABS to build abstractions in de Bruijn notation.

Note that con is an implicit parameter in the environment it is defined in; uses
outside of this environment must explicitly state this parameter (e.g. expr con in-
stead of expr). A type to be given to this placeholder is defined for each OL. For
example, the OL in Section 3.1 will have constants for application and abstraction
for each kind of λ-term and a constant for variables in de Bruijn terms. These will
be defined as an inductive type that is then used to instantiate the type expr for this
particular OL. This example is implemented in Section 3.5.

Object-level binding operators are encoded in HOAS using the Hybrid operator
lambda : (expr con → expr con) → expr con which is the meta-level binder defined
in the Hybrid library. When using it to encode HOAS, the expanded definition is
the underlying de Bruijn notation using only the constructors of expr. Although a
Hybrid user never sees the expanded form and only works at the HOAS level. As an
example, consider the untyped λ-term (λx.λy.x y). We can represent this in Hybrid as
(lambda (λx.(lambda (λy.x y)))) which expands to ABS (ABS (APP (BND 1) (BND 0))).
The lambda operator and the constructors of expr are used to encode OL syntax.

3.4 Specification Logic
Not all flowers will grow in the same conditions.
Given any plot of land, there are many plants that
will not grow there because they need specific nutri-
ents in their soil. We can create different soil mixes
depending on the needs of different classes of flowers.

There are OL judgments that we cannot encode as an inductive type in Coq. One

3. HYBRID 32

Γ, x : T ` E : T ′

Γ ` λx .E : T → T ′ tp_abs

Figure 3.3: Typing of λ-calculus Abstractions

example is a HOAS encoding of inference rules assigning simple types to λ-expressions.
The standard rule for typing abstractions can be seen in Figure 3.3. Building on the
example of Section 1.2, let typ be the type of OL types in the encoding in Coq. Let
arr be a constant of type typ → typ → typ representing arrow types. Recall tm is
the type of OL terms. We want to define a typing predicate tp : tm → typ → Prop.
Then the HOAS encoding of the rule for typing abstractions would be expressed as

∀(T T ′ : typ) (E : tm → tm),
(∀(x : typ), tp x T → tp (E x) T ′) → tp (lambda E) (arr T T ′).

Note that the tp predicate cannot be expressed inductively because of the (underlined)
negative occurrence of the tp predicate in the above formula for the typing abstraction
rule. Inductive types with negative recursive occurrences is not allowed by the Coq
type system.

As a solution to the problem of needing to reason about judgments that violate
this strict positivity requirement, Hybrid is a two-level system. By two-level we
mean an intermediate specification level is introduced between the OL encoding and
the meta-levels. The specification logic is less expressive than the ambient logic,
the calculus of constructions, but it allows us to encode judgments with negative
occurrences.

Hybrid is a Coq library and as mentioned earlier, this architectural decision
makes quick prototyping of SLs possible. Another important benefit is that one can
choose the simplest specification logic necessary for the present task, or possibly a
combination of more than one depending on the OL to be encoded. Judgments that
can be defined inductively do not need to be defined in a SL. This may simplify proofs
of OL properties as the user can avoid using a more complicated logic than necessary.

The two levels of the OL and SL interact through a parameter of the SL,

prog : atm → oo → Prop,

which is used to encode inference rules for OL judgments (and thus define provability
at the OL level). There are two arguments to prog; the first is the (atomic) inference
rule conclusion of type atm and the second a formula of type oo representing the
premise(s) of the rule.

We use a for atoms with type atm and o for formulas of type oo, possibly with
subscripts.

3. HYBRID 33

Inductive oo : Type :=
| atom : atm -> oo
| T : oo
| Conj : oo -> oo -> oo
| Imp : oo -> oo -> oo
| All : (expr con -> oo) -> oo
| Allx : (X -> oo) -> oo
| Some : (expr con -> oo) -> oo.

Figure 3.4: Type of SL Formulas

In this implementation, the type atm is a parameter of the SL and is instantiated
with an inductive type whose constructors predicates expressing the judgments of a
particular OL. For instance, the definition of atm for our above example might include
a predicate hodb : (expr con) → nat → (expr con) → atm relating the higher-order
and de Bruijn encodings at a given depth.

The type oo is the type of goals and clauses in the SL. The definition of oo for
the SL defined later is in Figure 3.4. The constant atom coerces an atom (a predicate
applied to its arguments) to an SL formula. For any α of type atm, we may refer
to (atom α) as an atomic formula. The constructor Conj represents conjunction and
Imp is used to build implications. Also note that in this implementation, we restrict
the type of universal quantification to two types, (expr con) and X, where X is a
parameter that can be instantiated with any primitive type; in our running example,
X would become nat for the depth of binding in a de Bruijn term. We leave out
disjunction. It is not difficult to extend our implementation to include disjunction
and quantification (universal or existential) over other primitive types, but these have
not been needed in reasoning about OLs.

We write 〈 a 〉, (o1 & o2), and (o1 −→ o2) as notation for (atom a), (Conj o1
o2), and (Imp o1 o2), respectively. Formulas quantified by All are written (All o)
or (All λ(x : expr con) . o x), where o has type expr con → oo. The latter is the
η-long form with types included explicitly. The other quantifiers are treated similarly.

The type oo is an inductive type, so Coq will automatically generate the induction
principle shown in Figure 3.5 as discussed in Section 2.7. We can use this induction
principle to prove a statement of the form ∀(o : oo), P o for some P : oo → Prop.
This proof will have one subcase for each constructor of oo.

A Hybrid SL is defined as an inductive type in Coq to encode a sequent calculus.
Each rule of the sequent calculus is represented by a constructor of the inductive type.
The constructor name is the rule name and the type arrow is used for implication
from premises to conclusion. The context of the sequent is defined to behave as a set
of elements of type oo. We write Γ or c for contexts.

Since we explore the SL and proofs of its structural properties in detail later when

3. HYBRID 34

oo_ind : ∀(P : oo → Prop),
(∗atom∗) (∀(a : atm), P (〈 a 〉)) →

(∗T∗) (P T) →
(∗Conj∗) (∀(o1 : oo), P o1 → ∀(o2 : oo), P o2 → P (o1&o2)) →
(∗Imp∗) (∀(o1 : oo), P o1 → ∀(o2 : oo), P o2 → P (o1 −→ o2)) →
(∗All∗) (∀(o : expr con → oo), (∀(e : expr con), P (o e)) → P (All o)) →

(∗Allx∗) (∀(o : X → oo), (∀(x : X), P (o x)) → P (Allx o)) →
(∗Some∗) (∀(o : expr con → oo), (∀(e : expr con), P (o e)) → P (Some o)) →

∀(o : oo), P o

Figure 3.5: Induction Principle for oo

describing the contributions of this research, we cut short the discussion here. For
continuity in this chapter, some notation and the meaning of provability judgments
of the SL are all we need now. We write Γ � o to denote an SL, where Γ has type
context and o has type oo. The symbol � is used as the SL sequent arrow.

3.5 Example OL Implementation
Now we can see how to encode our example syntax and judgments in Hybrid. Let tm
represent the type of direct λ-terms and dtm represent the type of de Bruijn terms.
Since these are used to form OL expressions, tm and dtm are aliases for expr con.
Before stating the implementation of the rules of the logic, we have to define the OL
constants. For direct application and abstraction we have hApp : tm → tm → tm
and hAbs : (tm → tm) → tm, respectively. Direct variables are encoded as meta-level
variables. For de Bruijn application, abstraction, and variables we have dApp : dtm →
dtm → dtm, dAbs : dtm → dtm, and dVar : nat → dtm, respectively.

In Figure 3.6 the constants of the OL are defined in the inductive type con. We
also have the definitions of OL applications and abstractions for the direct and de
Bruijn forms of λ-terms in terms of the OL constants and HOAS application and
lambda operator. Note that in Coq, fun is notation for abstractions. When we
write Coq code we use this notation but when writing pretty-printed versions of the
code we will use λ-calculus abstraction notation. For example, we often write Coq
abstractions fun x => f x as λx.f x because the latter is often more readable in our
discussions. In Figure 3.6 we can see the use of HOAS in the definition of hAbs where
we use the Hybrid lambda operator.

The atomic judgment discussed for this example (equivalence between the two

3. HYBRID 35

Inductive con : Set :=
| hAPP : con
| hABS : con
| dAPP : con
| dABS : con
| dVAR : nat -> con.

Definition hApp : tm -> tm -> tm :=
fun (e1 : tm) =>

fun (e2 : tm) =>
APP (APP (CON hAPP) e1) e2.

Definition hAbs : (tm -> tm) -> tm :=
fun (f : tm -> tm) =>

APP (CON hABS) (lambda f).

Definition dApp : dtm -> dtm -> dtm :=
fun (d1 : dtm) =>

fun (d2 : dtm) =>
APP (APP (CON dAPP) d1) d2.

Definition dAbs : dtm -> dtm :=
fun (d : dtm) =>

APP (CON cdABS) d.
Definition dVar : nat -> dtm :=

fun (n : nat) =>
(CON (dVAR n)).

Figure 3.6: Example OL: Encoding Syntax in Hybrid

3. HYBRID 36

Inductive prog : atm -> oo atm (expr con) X -> Prop :=
| hobd_app : forall (e1 e2 : tm) (n : nat) (d1 d2 : dtm),

prog (hodb (hApp e1 e2) n (dApp d1 d2))
(<<hodb e1 n d1>> & <<hodb e2 n d2>>)

| hodb_abs : forall (f : tm -> tm) (n : nat) (d : dtm),
abstr f ->
prog (hodb (hAbs f) n (dAbs d))

(All (fun (x : tm) =>
(Allx (fun (k : X) => <<hodb x (n + k) (dVar k)>>)) --->

<<hodb (f x) (n + 1) d>>)).

Figure 3.7: Example OL: Encoding OL Inference Rules hodb_app and
hodb_abs in Hybrid

representations of lambda terms) is part of the inductive type atm defined below.
Inductive atm : Set :=
| hodb : tm -> nat -> dtm -> atm.

The predicate hodb corresponds to the infix ≡n relation in the rules in Section 3.1
(i.e. hodb e n d is notation for e ≡n d). In the environment where the SL is defined,
there are parameters atm for atomic judgments of the OL, con for OL constants, and
X for another type we wish to universally quantify over. Now the type of SL formulas
with all parameters filled in is oo atm con X. This is the type of SL formulas at the
OL level.

The rules shown in Section 3.1 can now be defined in Hybrid using HOAS and
a SL. More specifically, we can now define the inductive type prog as shown in
Figure 3.7, where we see the HOAS encoding of the rules in Section 3.1. The inductive
type prog has a constructor for each of the inference rules hodb_app and hodb_abs.
As we will see, the hodb_var rule is not represented explicitly because it is taken care
of at the level of the SL. The first argument to prog is an atomic OL inference rule
conclusion and the second argument is a formula to encode the premises of the same
OL inference rule. The Coq notation for 〈 a 〉 is <<a>>.

An example theorem for this OL is to prove that the judgment hodb is determin-
istic in its first and third arguments (and thus the relational definition of the rules
represents a function). To do this we want to prove the two theorems below (where
= is equality in the ambient logic).

Proposition 3.5.1 (hodb_det1).

∀(Γ : context)(e : tm)(d1 d2 : dtm)(n : nat),

Γ � 〈 hodb e n d1 〉 → Γ � 〈 hodb e n d2 〉 → d1 = d2.

3. HYBRID 37

Proposition 3.5.2 (hodb_det3).

∀(Γ : context)(e1 e2 : tm)(d : dtm)(n : nat),

Γ � 〈 hodb e1 n d 〉 → Γ � 〈 hodb e2 n d 〉 → e1 = e2.

To prove these in Hybrid, we must first define a SL that is able to reason about
this OL. Once we have defined the SL, using it and the encoding of the OL just
described, we will be ready to prove the above propositions. As of this writing, these
theorems are not proven in Hybrid.

3.6 Comparison to Other Architectures
Our approach to growing flowers is not the only solu-
tion. One alternative is to build a factory specializing
in the production of flowers. This would give us full
control over lighting, water, and soil composition;
but the startup costs are high and modifications can
be prohibitively expensive.

Other systems use HOAS for encoding and reasoning about OLs with binders but
different choices are made in the implementation of these systems. We will briefly look
at the features of the two most closely related systems, Abella [11] and Beluga [22],
and compare these systems to Hybrid. These three systems, along with Twelf [23],
are compared in detail using benchmark problems in [10].

One feature that sets Hybrid apart from these systems is that Hybrid is a library
in an existing theorem proving system while Abella, Beluga, and Twelf are special-
purpose theorem proving systems built for reasoning about OLs using HOAS. Using
Coq means we can trust the proofs without having to develop extra infrastructure.
These proofs can be independently checked because a proof term is a λ-term; a proof
check is a type check in the Calculus of Constructions, a trusted and well studied
theoretical foundation for our work. The trade-off is less control over the reasoning
logic of Hybrid and more levels of encoding.

Abella Abella is an interactive proof environment using the special-purpose G logic
as its reasoning logic. G is intuitionistic, predicative, higher-order, and has fixed-point
definitions for atomic predicates. It also allows mathematical induction (over natural
numbers). Infrastructure for reasoning using HOAS is built-in to this logic. Like
Hybrid, it is a two-level logical framework. In contrast, since it is a special-purpose
system for reasoning about OLs, only one SL is used by the system at a time; to use
a different SL the system must be updated. Hybrid is a Coq library so multiple SLs
can can be available for use by any OL.

3. HYBRID 38

Abella is a tactic-based interactive theorem prover. This is the same style used
when using the interactive proof environment in Coq, but the crucial difference is
that on completion of a Coq proof the system generates a proof term. This is an
object that can be checked independent of the implementation of Cic or Coq. This
means that rather than trusting the implementation of a language and the tactics,
we are provided evidence on completion of the proof. Since Hybrid is implemented
in Coq, we have access to proof terms once a theorem is proven. This is not the case
in Abella.

An advantage to Abella is that is has the ∇-quantifier, a new specialized quan-
tifier providing better direct reasoning about binding in OLs. This allows Abella to
prove some properties about OLs that cannot be proven in Hybrid until we implement
∇.

Beluga Beluga is also a logical framework for reasoning about OLs using HOAS.
The reasoning logic in this system is contextual LF; it supports reasoning over con-
texts. It is more specialized for reasoning with HOAS than Hybrid is. It implements
a type theory instead of a logic.

In Beluga, some metatheory about contexts (e.g. the structural rules of weak-
ening, contraction, and exchange in sequent calculi) is implicit. This means that it
is built-in to the implementation rather than being axioms of a logic or proven to be
admissible as rules. The benefit of this choice is it is not necessary to prove theses
structural rules. The argument against this is that it requires more trust from the
user. It is necessary to trust the implementation of the system rather than being able
to see how the rules are defined to be axiomatic or proven to be admissible.

Chapter 4

Hereditary Harrop Formulas

The logic of hereditary Harrop formulas is foundational in the theory of logic pro-
gramming languages. Although these formulas have their origins in encoding search
behaviour and extending the power of logic programming languages in a semantically
clear way, we make use of them in this thesis for their role in restricting the structure
of proofs. Using such a restricted logic as a specification logic in Hybrid simplifies SL
metatheory proofs and proofs about object logics.

Section 4.1 will introduce the language of higher-order hereditary Harrop formu-
las and an inference system for reasoning about them. Following this, in Section 4.2
we will see how to modify this logic to one with focusing, which helps to optimize
proof search as will be described later.

4.1 Higher-Order Hereditary Harrop Formulas
The terms of the logic defined here are the terms of the simply-typed λ-calculus.
Types are built from the primitive types and the (right-associative) function arrow
→ as usual. We introduce a type o for formulas. Logical connectives and quantifiers
are introduced as constants with their corresponding types as in [5]. For example,
conjunction has type o → o → o and the quantifiers have type (τ → o) → o, with
some restrictions on τ described below. Predicates are function symbols whose target
type is o. Following [15], the grammars below for G (goals) and D (clauses) define
the formulas of the higher-order hereditary Harrop language.

Definition 4.1. Higher-Order Hereditary Harrop Formulas
Formulas built from the grammar for G are called G-formulas and formulas build from
the grammar for D are called D-formulas or higher-order hereditary Harrop formulas.

39

4. HEREDITARY HARROP FORMULAS 40

G ::= > | A | G & G | G ∨G | D −→ G | ∀τx.G | ∃τx.G

D ::= A | G −→ D | D & D | ∀τx.D

We use the metavariable A (possibly with subscripts) for atoms and write &
for conjunction, −→ for (right-associative) implication, and ∨ for disjunction. For
universal and existential quantification, written as usual with symbols ∀ and ∃, we
include the subscript τ to explicitly state the domain of quantification. This may be
left out when it can be inferred from context. In goal formulas, we restrict τ to be
a primitive type not containing o. In clauses, τ also cannot contain o, and is either
primitive or has the form τ1 → τ2 where both τ1 and τ2 are primitive types.

With the language of formulas defined, we can now consider an inference system
for reasoning about these formulas. This is a sequent calculus with the same conven-
tions as described for CoC in Section 2.1. A grammar for contexts of these sequents
is below. Contexts here are lists of hereditary Harrop formulas.

Γ ::= [] | Γ, D

The rules for this logic are in Figure 4.1. We use the same naming conventions
as in the grammars of this chapter and also use x for bound variables, c for fresh
variables, and t for terms.

The init rule allows a branch of a proof to be completed when an atom A on the
right of the sequent is in the context Γ. The only other way to finish a branch of a
proof is with the axiom > when the consequent of a sequent is >. The remaining rules
are standard left and right introduction rules for formulas built from the grammars
for G and D. In the rule ∨Ri

, i ∈ {1, 2}.
Notice that all sequents have only one formula on the right of the sequent (as

was also the case in the rules of CoC in Chapter 2). A derivation tree built using a
set of rules with this property is called M-proofs to say that it is a proof in minimal
logic (it is also an I-proof since it will also hold in intuitionistic logic, see [16]).

This logic has both left and right rules for each logical connective. In the course
of a proof, a proof writer may have multiple decisions on how to proceed. This
nondeterminism is not desirable if our goal is to automate proof search, which is the
case for logic programming.

Example 4.1. Hereditary Harrop Derivations
Consider the sequent ∀τx, (A1 x)&(A2 x) ` (A1 t)&(A2 t) where t : τ . Below are two
derivation trees for this sequent:

4. HEREDITARY HARROP FORMULAS 41

A ∈ Γ
Γ ` A

init
Γ ` > >R

Γ, D1, D2 ` G

Γ, D1&D2 ` G
&L

Γ ` G1 Γ ` G2

Γ ` G1&G2
&R

Γ, D1 ` G Γ, D2 ` G

Γ, D1 ∨D2 ` G
∨L

Γ ` Gi

Γ ` G1 ∨G2

∨Ri

Γ ` G1 Γ, D ` G2

Γ, G1 −→ D ` G2

−→L
Γ, D ` G

Γ ` D −→ G
−→R

Γ, D{x/t} ` G

Γ,∀τx,D ` G
∀L

Γ ` G{x/c}
Γ ` ∀τx,G

∀R

Γ, D{x/c} ` G

Γ,∃τx,D ` G
∃L

Γ ` G{x/t}
Γ ` ∃τx,G

∃R

Figure 4.1: The logic of higher-order hereditary Harrop formulas

4. HEREDITARY HARROP FORMULAS 42

A1 t ∈ A1 t, A2 t

A1 t, A2 t ` A1 t
init

(A1 t)&(A2 t) ` A1 t
&L

A2 t ∈ A1 t, A2 t

A1 t, A2 t ` A2 t
init

(A1 t)&(A2 t) ` A2 t
&L

(A1 t)&(A2 t) ` (A1 t)&(A2 t)
&R

∀τx, (A1 x)&(A2 x) ` (A1 t)&(A2 t)
∀L

In this first derivation, we alternate between uses of left and right rules until all leaves
that are sequents with the goal on the right contained in the context.

A1 t ∈ A1 t, A2 t

A1 t, A2 t ` A1 t
init

(A1 t)&(A2 t) ` A1 t
&L

∀τx, (A1 x)&(A2 x) ` A1 t
∀L

A2 t ∈ A1 t, A2 t

A1 t, A2 t ` A2 t
init

(A1 t)&(A2 t) ` A2 t
&L

∀τx, (A1 x)&(A2 x) ` A2 t
∀L

∀τx, (A1 x)&(A2 x) ` (A1 t)&(A2 t)
&R

In this second derivation, beginning at the root we first use as many right rules as
necessary to only have atoms on the right side of sequents. Then we apply left rules
until we finish the proof as above. This derivation is an example of a uniform proof.

Definition 4.2. Uniform Proof
A uniform proof is an I-proof where every sequent in the derivation tree that is non-
atomic on the right is derived from the right introduction rule (e.g. &R, ∀R, etc.) of
its top-level connective.

We can see that the first derivation above is not a uniform proof, because the
rule ∀L is used to derive a sequent that does not have an atom on the right. If we
wish to allow only uniform proofs, then this does not restrict what is provable by the
logic of Figure 4.1. The set of uniform proofs using rules in Figure 4.1 in a restricted
manner is sound and complete with respect to the set of proofs that can be built
using the same rules without this restriction.

Uniform proofs can be generalized to the notion of focusing as presented in [13]
and [4], where the logic presented above is viewed as the negative fragment of intu-
itionistic logic.

4.2 Focusing
A proof search strategy that reduces nondeterminism will make it easier to add au-
tomation to proof search. Here we describe a strategy that divides proof search into
two stages by augmenting the inference system in a way that reduces the number of
rule choices available at each step.

4. HEREDITARY HARROP FORMULAS 43

Γ; [D] ` A D ∈ Γ

Γ ` A
focus A ∈ Γ

Γ ` A
init

Γ; [A] ` A
match

Γ ` > >R

Γ, [Di] ` A

Γ, [D1&D2] ` A
&Li

Γ ` G1 Γ ` G2

Γ ` G1&G2
&R

Γ, [D1] ` A Γ, [D2] ` A

Γ, [D1 ∨D2] ` A
∨L

Γ ` Gi

Γ ` G1 ∨G2

∨Ri

Γ ` G Γ, [D] ` A

Γ, [G −→ D] ` A
−→L

Γ, D ` G

Γ ` D −→ G
−→R

Γ, [D{x/t}] ` A

Γ, [∀τx,D] ` A
∀L

Γ ` G{x/c}
Γ ` ∀τx,G

∀R

Γ, [D{x/c}] ` A

Γ, [∃τx,D] ` A
∃L

Γ ` G{x/t}
Γ ` ∃τx,G

∃R

Figure 4.2: The logic of higher-order hereditary Harrop formulas with focus-
ing

The idea is, in a bottom-up proof, we apply the appropriate right-rule for the
top-level connective of the consequent of the sequent until the consequent is atomic.
At this point we will transition to using left rules on a formula from the context; we
choose a single formula from the context and apply left rules on this formula until
this “focused” formula is atomic. If it matches the atom on the right of the sequent,
the branch is complete, otherwise the proof fails and we return to the point where a
formula from the context was focused.

To accomplish this, the logic of Figure 4.1 is extended to that in Figure 4.2.
A sequent Γ; [D] ` A is called a focused sequent and we call rules with a focused
sequent conclusion focused rules. The interpretation is that D is a formula under
focus. Here we use the same sequent arrow ` for both kinds of sequents. Notice
that the consequent of the sequent for all focused rules is an atom. This is because,

4. HEREDITARY HARROP FORMULAS 44

as stated above, we first apply the right-rules until the right side of the sequent is
atomic. Missing from the above description was a method to ensure the left rules are
applied to a single element of the context until it too is atomic. This is accomplished
with the hhfocus rule, which acts as a gateway from the right rules to the focused
rules. The focused rules appear to be similar to the left rules in Figure 4.1, but now
we are focused on a particular formula and are not able to alternate between the
elements in the context that we apply left rules to.

An additional optimization is achieved by requiring the right branch of the −→R

rule (a focused sequent) to be fully explored before the left (unfocused sequent). This
way, once we are applying left rules, we continue to do so until we have reached a leaf
with sequent Γ; [A′] ` A. If A = A′, then the branch is completed with match and
we work on the left (unfocused sequent) branch of the last application of the −→R

rule. Otherwise, the branch cannot be completed and a different choice of formula
must be focused at the start of the current sequence of focused rule applications. We
will illustrate this by showing how we can write a focused derivation of the sequent
in example 4.1.

Example 4.2. Hereditary Harrop Focused Derivation
This proof is very similar to the second derivation of example 4.1, but now we use
focused rules where there we used left rules and make use of the focus and match
rules. See below for the derivation tree of ∀x, (A1 x)&(A2 x) ` (A1 t)&(A2 t) using
the focused sequent calculus of Figure 4.2.

∀τx, (A1 x)&(A2 x); [A1 t] ` A1 t
match

∀τx, (A1 x)&(A2 x); [(A1 t)&(A2 t)] ` A1 t
&L1

∀τx, (A1 x)&(A2 x); [∀τx, (A1 x)&(A2 x)] ` A1 t
∀L

∀τx, (A1 x)&(A2 x) ` A1 t
focus

∀τx, (A1 x)&(A2 x); [A2 t] ` A2 t
match

∀τx, (A1 x)&(A2 x); [(A1 t)&(A2 t)] ` A2 t
&L2

∀τx, (A1 x)&(A2 x); [∀τx, (A1 x)&(A2 x)] ` A2 t
∀L

∀τx, (A1 x)&(A2 x) ` A2 t
focus

∀τx, (A1 x)&(A2 x) ` (A1 t)&(A2 t)
&R

Notice that even though we use the focus rule to select a formula from the context
to focus and used the focused rules to manipulate it, we still retain the original formula
in the context.

Another important observation is that proofs using this focused sequent calculus
are forced to be uniform proofs, because we cannot freely choose between applying
left or right rules; the search strategy forces us to use the rule introducing the top-
level connective of the principal formula of the sequent. This logic is also sound and
complete with respect to the logic of Figure 4.1.

In the next chapter we will present a specification logic that is a slight modifi-
cation of the sequent calculus of Figure 4.2. We modify this logic is because there
are rules that are unnecessary for our application of hereditary Harrop formulas and

4. HEREDITARY HARROP FORMULAS 45

focusing. There are also some implementation details built in to the rules presented
later, as will be explained in Chapter 5.

Part II

Contributions

46

Chapter 5

Specification Logic

The first stage of the contributions outlined in this thesis is defining a specification
logic to increase the reasoning power of Hybrid. The new specification logic (SL)
for Hybrid is based on hereditary Harrop formulas using an intuitionistic logic with
focusing as described in Chapter 4. We adopt a modified version of the rules very
close to the style of the rules of the specification logic used in the higher-order version
of Abella [25]. We do not include any rules for disjunction here because they have
not been necessary for object logics in case studies of interest. The SL could easily
be extended to add these rules and the proofs of SL metatheory would have the same
structure, as will be seen in Chapter 7.

We note that unlike in all previous SLs for Hybrid there is no restriction on
the implicational complexity (see [8]), because G-formulas in higher-order hereditary
Harrop language allow D-formulas as the antecedent of implication as was seen in
Section 4.1. In all previous SLs, only atomic formulas were allowed in place of the
more general D-formulas allowed here.

The SL presented in this chapter is a sequent calculus implemented as an in-
ductive type in Coq. Section 5.1 describes how contexts are defined for this SL.
Section 5.2 presents the Coq implementation of the SL based on hereditary Harrop
formulas and we see how to prove properties of this SL by structural induction in
Section 5.3.

In Appendix A, we list notations that will be used in the rest of the thesis.

5.1 Contexts in Coq
The type context represents contexts of assumptions in sequents and is defined using
the Coq ensemble library as ensemble oo since we want contexts to behave as sets
with elements of type oo. In proofs of some context lemmas stated below we use the

47

5. SPECIFICATION LOGIC 48

ensemble extensional equality axiom:

Extensionality_Ensembles : ∀(E1 E2 : ensemble), (Same_set E1 E2) → E1 = E2

where Same_set is defined in the Ensemble library. We use o ∈ c as notation for
elem o c which means formula o is an element of context c. Context subset, written
Γ1 ⊆ Γ2, is defined as ∀(o : oo), o ∈ Γ1 → o ∈ Γ2.

We write (Γ, β) as notation for (context_cons Γ β). We write write c or Γ to
denote contexts when discussing formalized proofs.

The context lemmas below are proven as part of this work and are used in later
proofs in this thesis. See the accompanying source code for the proofs. Note that
all variables are externally quantified and each occurrence of β and Γ, possibly with
subscripts, has type oo and context, respectively.

Lemma 5.1. elem_inv

β1 ∈ (Γ, β2)

(β1 ∈ Γ) ∨ (β1 = β2)

Lemma 5.2. elem_sub

β1 ∈ Γ

β1 ∈ (Γ, β2)

Lemma 5.3. elem_self

β ∈ (Γ, β)

Lemma 5.4. elem_rep

β1 ∈ (Γ, β2, β2)

β1 ∈ (Γ, β2)

Lemma 5.5. context_swap

(Γ, β1, β2) = (Γ, β2, β1)

Lemma 5.6. context_sub_sup

Γ1 ⊆ Γ2

(Γ1, β) ⊆ (Γ2, β)

5. SPECIFICATION LOGIC 49

5.2 Hereditary Harrop Specification Logic in Coq
The inference rules of the SL are implemented using two sequent judgments that
distinguish between goal-reduction rules and backchaining rules which correspond
to the right rules and left focused rules, respectively, of Figure 4.2 in Section 4.2.
Figures 5.1 and 5.2 implement the inference rules of the SL (except for the disjunction
rules, as mentioned in the introduction to this chapter). They are encoded in Coq as
two mutually inductive types, one each for goal-reduction and backchaining sequents.
The syntax used in the figures is a pretty-printed version of the Coq inductive types
grseq and bcseq. Goal-reduction sequents have type grseq : context → oo → Prop,
and we write Γ � β as notation for grseq Γ β. Backchaining sequents have type
bcseq : context → oo → atm → Prop and we write Γ, [β] � α as notation for
bcseq Γ β α, understanding β to be the focused formula from Γ. The symbol ∀ is
used for universal quantification in Coq, rather than universal quantification in SL
formulas. When we see ∀ in the premises of rules, this is to make it clear that it is
only over the premise of the rule.

The rule names in the figures are the constructor names in the inductive defini-
tions in the Coq files. The premises and conclusion of a rule are the argument types
and the target type, respectively, of one clause in the definition. Quantification at
the outer level is implicit and, as noted, inner quantification is written explicitly in
the premises. For example, the linear format of the g_dyn rule from Figure 5.1 with
all quantifiers explicit is

∀(Γ : context)(D : oo)(A : atm), D ∈ Γ → Γ, [D] � A → Γ � 〈 A 〉

This is the type of the g_dyn constructor in the inductive definition of grseq (see
the definition of grseq in the Coq files).

The notation 〈 A 〉 is to say that A : atm is coerced to have type oo, where oo is
the implemented type of formulas (see Figure 3.4), referred to as o in Chapter 4. The
constants Some and All are used for existential and universal quantification in SL
formulas, respectively, over the type expr con which is the type for OL expressions.
Allx is a constant for universal quantification over a type X of type Set. We juxtapose
appropriate terms to denote application since Coq will reduce the expression, rather
than explicitly writing the substitution (for example, compare rule ∀R in Figure 4.2 to
rule g_allx in Figure 5.1). A final implementation byproduct is the predicate proper
appearing in the premise of some rules. This is used in the Hybrid library to rule out
terms of type expr that have dangling indices (see [8]).

In the sequents for this SL there is also an implicit fixed context ∆, called the
static program clauses, containing closed clauses (D-formulas) of the form

∀τ1 . . . ∀τn .G −→ A

5. SPECIFICATION LOGIC 50

A :− G Γ � G
Γ � 〈 A 〉

g_prog
D ∈ Γ Γ, [D] � A

Γ � 〈 A 〉
g_dyn

Γ � T
g_tt

Γ � G1 Γ � G2

Γ � G1&G2

g_and
Γ , D � G

Γ � D −→ G
g_imp

proper E Γ � GE

Γ � Some G
g_some

∀(E : expr con), (proper E → Γ � GE)

Γ � All G
g_all

∀(E : X), (Γ � GE)

Γ � Allx G
g_allx

Figure 5.1: Goal-Reduction Rules, grseq : context → oo → Prop

with n ≥ 0. Any set of D-formulas can be transformed to an equivalent one that
all have this form. These clauses represent the inference rules of an OL. We do not
explicitly mention ∆ in the rules for this SL because no rules modify it.

The goal-reduction rules of Figure 5.1 are implemented version of the right in-
troduction rules of this sequent calculus as seen in Figure 4.2. The rules g_prog and
g_dyn are the only goal-reduction rules with an atomic principal formula.

The rule g_prog is used to backchain over the static program clauses∆, which are
defined for each new OL as an inductive type called prog of type atm → oo → Prop,
and represent the inference rules of the OL (this is discussed further in Section 3.4).
The rule g_prog is the interface between the SL and OL layers and we say that the SL
is parametric in OL provability. We write A :− G for (prog A G) to suggest backward
implication. Recall that clauses in ∆ may have outermost universal quantification.
The premise A :− G actually represents an instance of a clause in ∆.

The rule g_dyn allows backchaining over dynamic assumptions (i.e. a formula
from Γ) and is the implemented version of the focus rule of Figure 4.2. To use this
rule to prove Γ� 〈 A 〉, we need to show D ∈ Γ and Γ, [D]�A. Formula D is chosen
from, or shown to be in, the dynamic context Γ and we use the backchaining rules of
Figure 5.2 to show Γ, [D] � A (where D is the focused formula).

The backchaining rules of Figure 5.2 are the implemented version of the standard
focused left rules for conjunction, implication, and universal and existential quantifi-
cation seen in Figure 4.2. Considered bottom up, they provide backchaining over the
focused formula. In using the backchaining rules, each branch is either completed
by b_match where the focused formula is an atomic formula identical to the goal
of the sequent, or b_imp is used resulting in one branch switching back to using
goal-reduction rules.

5. SPECIFICATION LOGIC 51

Γ, [〈 A 〉] � A
b_match

Γ, [D1] � A

Γ, [D1&D2] � A
b_and1

Γ, [D2] � A

Γ, [D1&D2] � A
b_and2

Γ � G Γ, [D] � A

Γ, [G −→ D] � A
b_imp

proper E Γ, [DE] � A

Γ, [All D] � A
b_all

Γ, [DE] � A

Γ, [Allx D] � A
b_allx

∀(E : expr con), (proper E → Γ, [DE] � A)

Γ, [Some D] � A
b_some

Figure 5.2: Backchaining Rules, bcseq : context → oo → atm → Prop

5.3 Mutual Structural Induction
The theorem statements in this thesis all have the form

(∀ (c : context) (o : oo),
(c � o) → (P1 c o)) ∧

(∀ (c : context) (o : oo) (a : atm),
(c, [o] � a) → (P2 c o a))

where P1 : context → oo → Prop and P2 : context → oo → atm → Prop are
predicates extracted from the statement to be proven. The Scheme command provides
an induction principle to allow us to prove statements of the above form by mutual
structural induction.

To prove such a statement by mutual structural induction over c�o and c, [o]�a,
15 subcases must be proven, one corresponding to each inference rule of the SL. The
proof state of each subcase of this induction is constructed from an inference rule of
the system. We can see the sequent mutual induction principle in Figure 5.3, where
each antecedent (clause of the induction principle defining the cases) corresponds to a
rule of the SL and a subcase for an induction using this technique. After backchaining
over the induction principle, the 15 subcases are generated. As an aside, externally
quantified variables in each antecedent can be introduced to the context of assump-
tions of the proof state and are then considered signature variables. For example, the
subcase for g_prog will have signature variables c : context, o : oo, and a : atm.

This induction principle is automatically generated following the description
shown below, with examples from the figure given in each point.

5. SPECIFICATION LOGIC 52

seq_mutind : ∀(P1 : context → oo → Prop)(P2 : context → oo → atm → Prop),
(∗g_prog∗) (∀(c : context)(o : oo)(a : atm),

a :− o → c � o → P1 c o → P1 c 〈 a 〉) →
(∗g_dyn∗) (∀(c : context)(o : oo)(a : atm),

o ∈ c → c, [o] � a → P2 c o a → P1 c 〈 a 〉) →
(∗g_tt∗) (∀(c : context), P1 c T) →

(∗g_and∗) (∀(c : context)(o1 o2 : oo),
c � o1 → P1 c o1 → c � o2 → P1 c o2 → P1 c (o1&o2)) →

(∗g_imp∗) (∀(c : context)(o1 o2 : oo),
c, o1 � o2 → P1 (c, o1) o2 → P1 c (o1 −→ o2)) →

(∗g_all∗) (∀(c : context)(o : expr con → oo),
(∀(e : expr con), proper e → c � o e) →
(∀(e : expr con), proper e → P1 c (o e)) → P1 c (All o)) →

(∗g_allx∗) (∀(c : context)(o : X → oo),
(∀(e : X), c � o e) → (∀(e : X), P1 c (o e)) → P1 c (Allx o)) →

(∗g_some∗) (∀(c : context)(o : expr con → oo)(e : expr con),
proper e → c � o e → P1 c (o e) → P1 c (Some o)) →

(∗b_match∗) (∀(c : context)(a : atm)), c, [〈 a 〉] � a)

(∗b_and1∗) (∀(c : context)(o1 o2 : oo)(a : atm),
c, [o1] � a → P2 c o1 a → P2 c (o1&o2) a) →

(∗b_and2∗) (∀(c : context)(o1 o2 : oo)(a : atm),
c, [o2] � a → P2 c o2 a → P2 c (o1&o2) a) →

(∗b_imp∗) (∀(c : context)(o1 o2 : oo)(a : atm),
c � o1 → P1 c o1 → c, [o2] � a → P2 c o2 a →
P2 c (o1 −→ o2) a) →

(∗b_all∗) (∀(c : context)(o : expr con → oo)(a : atm)(e : expr con),
proper e → c, [o e] � a → P2 c (o e) a → P2 c (All o) a) →

(∗b_allx∗) (∀(c : context)(o : X → oo)(a : atm)(e : X),
c, [o e] � a) → P2 c (o e) a → P2 c (Allx o) a →

(∗b_some∗) (∀(c : context)(o : expr con → oo)(a : atm),
(∀(e : expr con), proper e → c, [o e] � a) →
(∀(e : expr con), proper e → P2 c (o e) a) → P2 c (Some o) a) →

(∀(c : context)(o : oo), c � o → P1 c o) ∧
(∀(c : context)(o : oo)(a : atm), c, [o] � a → P2 c o a)

Figure 5.3: SL Sequent Mutual Induction Principle

5. SPECIFICATION LOGIC 53

• Non-sequent premises are assumptions of the induction subcase. For example,
o ∈ c from the g_dyn rule.

• For every rule premise that is a goal-reduction sequent (with possible local
quantifiers) of the form ∀(x1 : T1) · · · (xn : Tn),Γ � β where n ≥ 0, the in-
duction subcase has assumptions (∀(x1 : T1) · · · (xn : Tn),Γ � β) and (∀(x1 :
T1) · · · (xn : Tn), P1 Γ β). For example, ∀(e : expr con), proper e → c � o e
and ∀(e : expr con), proper e → P1 c (o e) from the g_all rule with n = 2 and
unabbreviated prefix ∀(e : expr con)(H : proper e).

• For every rule premise that is a backchaining sequent (with possible local
quantifiers) of the form ∀(x1 : T1) · · · (xn : Tn),Γ, [β] � α where n ≥ 0, the
induction subcase has assumptions (∀(x1 : T1) · · · (xn : Tn),Γ, [β] � α) and
(∀(x1 : T1) · · · (xn : Tn), P2 Γ β α). For example, c, [o2] � a and (P2 c o2 a) from
the b_imp rule.

• If the rule conclusion is a goal-reduction sequent of the form Γ � β, then the
subcase goal is P1 Γ β. For example, (P1 c 〈 a 〉) from the g_dyn rule.

• If the rule conclusion is a backchaining sequent of the form Γ, [β]� α, then the
subcase goal is P2 Γ β α. For example, (P2 c (o1 −→ o2) a) from the b_imp
rule.

Assumptions in the second and third bullets above that contain P1 or P2 are in-
duction hypotheses. Implicit in the last two points is the possible introduction of
more assumptions, in the case when P1 and P2 are dependent products themselves
(i.e. contain quantification and/or implication). As a trivial example, if P1 Γ β is
∀(δ : oo), β ∈ Γ → β ∈ (Γ, δ), then we can introduce δ into the context as a new
signature variable and β ∈ Γ as a new assumption. We will refer to assumptions
introduced this way as induction assumptions in future proofs, since they are from a
predicate that is used to construct induction hypotheses.

In describing proofs, we will follow the Coq style as introduced in Section 2.6.1
and write the proof state in a vertical format with the assumptions above a horizontal
line and the goal below it. For example, the g_dyn subcase requires a proof of

∀(c : context)(o : oo)(a : atm),
o ∈ c → c, [o] � a → P2 c o a → P1 c 〈 a 〉

This can be seen in lines 4 and 5 in the induction principle in Figure 5.3. After
introductions, the proof state will have the following form:

5. SPECIFICATION LOGIC 54

c : context
o : oo
a : atm

H1 : o ∈ c

H2 : c, [o] � a

IH : P2 c o a

P1 c 〈 a 〉

As in Coq, we provide hypothesis names so that we can refer to them as needed.
Also, we often omit the type declarations of signature variables. In this case we could
have omitted c : context, o : oo, and a : atm because they can be easily inferred from
context (they must have these types for c, [o] � a to be well-typed).

Chapter 6

Specification Logic Metatheory

Proving admissibility of structural rules of a specification logic (SL) frees us from
defining them as axiomatic and having to make external justifications for such ax-
ioms. We prove admissibility of the structural rules of contraction, weakening, ex-
change, and cut for both goal-reduction and backchaining sequents. Once proven at
the specification level, they can be reused for any OL using this SL. Cut admissibility
is particularly useful and considerably more challenging to prove than the other struc-
tural rules. It establishes consistency and also provides justification for substituting
a formula for an assumption in a context of assumptions. It can greatly simplify
reasoning about OLs in systems that provide HOAS.

We can prove properties of this logic using the mutual structural induction prin-
ciple over the rules of the SL from Figure 5.3 when the theorem (or goal statement)
is the same form as the conclusion of the induction principle. Backchaining over the
induction principle, we will have fifteen subcases; one subcase corresponding to each
rule of the SL. Many of these cases have similar proofs. We will look at a few cases
that are interesting for the following reasons:

g_dyn
This rule has a goal-reduction sequent conclusion, a non-sequent premise de-
pending on the context of the conclusion and a backchaining sequent premise.

g_imp
This rule has a goal-reduction sequent conclusion and a sequent premise with a
context different from that of the conclusion.

b_imp
This rule has a backchaining sequent conclusion and both a goal-reduction and
backchaining sequent premise.

55

6. SPECIFICATION LOGIC METATHEORY 56

6.1 Structural Rules
For our SL we prove the standard structural rules of weakening, contraction, and
exchange for both goal-reduction and backchaining sequents:

Theorem 6.1. gr_weakening

Γ � β2

Γ , β1 � β2

Theorem 6.2. bc_weakening

Γ, [β2] � α

Γ , β1, [β2] � α

Theorem 6.3. gr_contraction

Γ , β1 , β1 � β2

Γ , β1 � β2

Theorem 6.4. bc_contraction

Γ , β1 , β1, [β2] � α

Γ , β1, [β2] � α

Theorem 6.5. gr_exchange

Γ , β2 , β1 � β3

Γ , β1 , β2 � β3

Theorem 6.6. bc_exchange

Γ , β2 , β1, [β3] � α

Γ , β1 , β2, [β3] � α

These are all corollaries of a general theorem:

6. SPECIFICATION LOGIC METATHEORY 57

Theorem 6.7. monotone

Γ ⊆ c′ Γ � β

c′ � β
and

Γ ⊆ c′ Γ, [β] � α

c′, [β] � α

Proof:
Theorem 6.7 is proven by mutual structural induction over the premises Γ � β

and Γ, [β] � α. Defining P1 and P2 as

P1 :=λ (c : context)(o : oo) .
∀ (c′ : context), c ⊆ c′ → c′ � o

P2 :=λ (c : context)(o : oo)(a : atm) .
∀ (c′ : context), c ⊆ c′ → c′, [o] � a

we are proving

(∀ (c : context) (o : oo),
(c � o) → (P1 c o)) ∧

(∀ (c : context) (o : oo) (a : atm),
(c, [o] � a) → (P2 c o a))

which has the form discussed in Section 5.3, so the mutual structural induction prin-
ciple may be used. Here we will show the cases for the rules g_dyn, g_imp, and
b_imp. The antecedent of the induction principle for each subcase gives the initial
subgoals.

Case D ∈ Γ Γ, [D] � A

Γ � 〈 A 〉
g_dyn:

This rule has one non-sequent premise and one backchaining sequent premise. So
there will be one induction hypothesis from the backchaining sequent premise. From
the induction principle in Figure 5.3 we need to prove

∀(c : context)(o : oo)(a : atm),
o ∈ c → c, [o] � a → P2 c o a → P1 c 〈 a 〉

6. SPECIFICATION LOGIC METATHEORY 58

After introductions the proof state is

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : P2 c o a

P1 c 〈 a 〉

Unfolding P1 and P2 as defined for this theorem, we have

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : ∀ (c′ : context), c ⊆ c′ → c′, [o] � a

∀ (c′ : context), c ⊆ c′ → c′ � 〈 a 〉

Next we make introductions from the goal.

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : ∀ (c′ : context), c ⊆ c′ → c′, [o] � a

c′ : context
P1 : c ⊆ c′

c′ � 〈 a 〉

Now the goal is a goal-reduction sequent with an atomic formula. We can backchain
with the rule g_dyn and will get two new subgoals from the premises of this rule.

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : ∀ (c′ : context), c ⊆ c′ → c′, [o] � a

c′ : context
P1 : c ⊆ c′

(o ∈ c′), (c′, [o] � a)

To prove the second subgoal we use induction hypothesis IHb1 to get the new subgoal
c ⊆ c′ which is provable by induction assumption P1. To prove the first, we need to

6. SPECIFICATION LOGIC METATHEORY 59

unfold the definition of subset in P1.

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : ∀ (c′ : context), c ⊆ c′ → c′, [o] � a

c′ : context
P1 : ∀(o : oo), o ∈ c → o ∈ c′

o ∈ c′

Backchaining over P1 we get the new subgoal o ∈ c which is provable by assumption
H1. The proof for this case is complete.

Case Γ , D � G
Γ � D −→ G

g_imp:

This rule has one goal-reduction sequent premise which gives one induction hy-
pothesis. From the induction principle the goal is

∀(c : context)(o1 o2 : oo), c, o1 � o2 → P1 (c, o1) o2 → P1 c (o1 −→ o2)

After introductions we are proving

Hg1 : c, o1 � o2

IHg1 : P1 (c, o1) o2

P1 c (o1 −→ o2)

Unfolding P1 as defined for this theorem, we have

Hg1 : c, o1 � o2

IHg1 : ∀(c′ : context), (c, o1) ⊆ c′ → c′ � o2

∀(c′ : context), c ⊆ c′ → c′ � o1 −→ o2

Next we make introductions from the goal.

Hg1 : c, o1 � o2

IHg1 : ∀(c′ : context), (c, o1) ⊆ c′ → c′ � o2

c′ : context
P1 : c ⊆ c′

c′ � o1 −→ o2

6. SPECIFICATION LOGIC METATHEORY 60

The rule g_imp is the only rule of the SL that we can backchain over with the current
goal.

Hg1 : c, o1 � o2

IHg1 : ∀(c′ : context), (c, o1) ⊆ c′ → c′ � o2

c′ : context
P1 : c ⊆ c′

c′, o1 � o2

Now we use the induction hypothesis IHg1. This step of backward reasoning gives the
new subgoal c, o1 ⊆ c′, o1. Next backchain with the context lemma context_sub_sup
(Lemma 5.6) and we have to prove c ⊆ c′ which is provable by the induction assump-
tion P1. The proof for this case is complete.

Case Γ � G Γ, [D] � A

Γ, [G −→ D] � A
b_imp:

This rule has one goal-reduction sequent premise and one backchaining sequent
premise. So there will be one induction hypothesis from each sequent premise. From
the induction principle we need to prove

∀(c : context)(o1 o2 : oo)(a : atm),
c � o1 → P1 c o1 → c, [o2] � a → P2 c o2 a → P2 c (o1 −→ o2) a

After introductions the proof state is

Hg1 : c � o1

IHg1 : P1 c o1

Hb1 : c, [o2] � a

IHb1 : P2 c o2 a

P2 c (o1 −→ o2) a

We unfold uses of P1 and P2.

Hg1 : c � o1

IHg1 : ∀(c′ : context), c ⊆ c′ → c′ � o1

Hb1 : c, [o2] � a

IHb1 : ∀(c′ : context), c ⊆ c′ → c′, [o2] � a

∀(c′ : context), c ⊆ c′ → c, [o1 −→ o2] � a

6. SPECIFICATION LOGIC METATHEORY 61

Next we can make introductions from the goal.

Hg1 : c � o1

IHg1 : ∀(c′ : context), c ⊆ c′ → c′ � o1

Hb1 : c, [o2] � a

IHb1 : ∀(c′ : context), c ⊆ c′ → c′, [o2] � a

IP1 : c ⊆ c′

c′, [o1 −→ o2] � a

The only SL rule whose conclusion matches the goal is b_imp so we backchain with
this rule to get two new subgoals.

Hg1 : c � o1

IHg1 : ∀(c′ : context), c ⊆ c′ → c′ � o1

Hb1 : c, [o2] � a

IHb1 : ∀(c′ : context), c ⊆ c′ → c′, [o2] � a

IP1 : c ⊆ c′

(c′ � o1), (c
′, [o2] � a)

We backchain over the appropriate induction hypothesis for each of these subgoals,
and in both cases get the subgoal c ⊆ c′, provable by induction assumption IP1. The
proof of this subcase is complete.

6.2 Cut Admissibility
The cut rule is shown to be admissible in this specification logic by proving the
following:

Theorem 6.8. cut_admissible

Γ, δ � β Γ � δ

Γ � β
and

Γ, δ, [β] � α Γ � δ

Γ, [β] � α

Since our specification logic makes use of two kinds of sequents, we prove two cut rules.
These correspond to the two conjuncts above, where the first is for goal-reduction se-
quents and the second is for backchaining sequents.

6. SPECIFICATION LOGIC METATHEORY 62

Proof: (Outline)

This proof will be a nested induction, first over the cut formula δ, then over the
sequent premises with δ in their contexts. Since there are seven rules for constructing
formulas and 15 SL rules, this will result in 105 subcases. These can be partitioned
into five classes with the same proof structure, four of which we briefly illustrate
presently.

The cases for the axioms g_tt and b_match are proven by one use of constructor
(7 formulas * 2 rules = 14 subcases).

goal sequent
constructor

Cases for rules with only sequent premises, including those with inner quantifi-
cation, with the same context as the conclusion have the same proof structure. Note
that by same context, we include rules modifying the focused formula. The rules in
this class are g_and, g_all, g_allx, b_and1, b_and2, b_imp, b_allx, and b_some
(7 formulas * 8 rules = 56 subcases). We apply constructor to the goal sequent
which, after any introductions, will give a sequent subgoal for each sequent premise
of the rule. To each of the new subgoals we apply the appropriate induction hypoth-
esis, giving new subgoals for each antecedent of each induction hypothesis used. Now
all goals can be proven by assumption (hypotheses from the induction principle and
induction assumptions).

{
IH antecedents

} assumption

{
rule sequent premise(s)

} apply IH

goal sequent
constructor

Only one rule modifies the context of the sequent, g_imp (7 formulas * 1 rule =
7 subcases). The proof of the subcase for this rule is similar to above, but requires
the use of another structural rule, gr_weakening (Theorem 6.1), before the sequent
subgoal will match the sequent assumption introduced from the goal.

The remaining four rules have both a non-sequent premise and a sequent premise.
Of these, the subcases for g_prog, g_some, and b_all have a similar proof structure;
apply constructor to the goal so that the non-sequent premise is provable by as-
sumption, then prove the branch for the sequent premise as above (7 formulas * 3
rules = 21 subcases).

6. SPECIFICATION LOGIC METATHEORY 63

non-sequent premise
assumption

IH antecedents
assumption

sequent premise
apply IH

goal sequent
constructor

The proof of the subcase for g_dyn is more complicated due to the form of the
non-sequent premise, D ∈ Γ, which depends on the context in the goal sequent,
Γ � 〈 A 〉. We need more details to analyse the subcases for this rule further.

So 98 of 105 subcases are proven following this outline.
(end outline)

The cut admissibility theorem stated above is a simple corollary of the following
theorem (with explicit quantification):

∀(δ : oo), (∀(c : context)(o : oo), c � o →
∀(c′ : context), c = c′, δ → c′ � δ → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a →
∀(c′ : context), c = c′, δ → c′ � δ → c′, [o] � a)

Proof:
We begin with an induction over δ, so we are proving ∀(δ : oo), P δ with P

defined as

P : oo → Prop := λ(δ : oo) .
(∀(c : context)(o : oo),

c � o → P1 c o) ∧
(∀(c : context)(o : oo)(a : atm),

c, [o] � a → P2 c o a)

where

P1 : context → oo → Prop := λ(c : context)(o : oo) .
∀(c′ : context), c = (c′, δ) → c′ � δ → c′ � o

P2 : context → oo → atm → Prop := λ(c : context)(o : oo)(a : atm) .
∀(c′ : context), c = (c′, δ) → c′ � δ → c′, [o] � a

P , P1, and P2 will provide the induction hypotheses used in this proof. Next is a
nested induction, which is a mutual structural induction over c�o and c, [o]�a using
P1 and P2 as above.

6. SPECIFICATION LOGIC METATHEORY 64

In the proof presentation here we will only look at cases for the rule g_dyn.
Later we will see a generalization of the SL and a proof that captures the remaining
98 cases, as well as the proof of monotone (Theorem 6.7) seen above. Since in the
proof of monotone we have already seen how to prove a few concrete cases in detail
using the mutual structural induction principle, it would be tedious to continue to
work through more subcases in the same way.

6.2.1 Subcase for g_dyn: Alternate Proof Attempt
Before proving this subcase for the nested induction, suppose that rather than an
outer induction over the cut formula δ we had simply introduced this variable into
the context of the proof state and begun the proof as a mutual structural induction
over the sequent premises with δ in their context. Then we can wait until it is
necessary to have an induction over the cut formula.

The subcase of the induction principle for g_dyn from Figure 5.3 requires a proof
of

∀(c : context)(o : oo)(a : atm),
o ∈ c → c, [o] � a → P2 c o a → P1 c 〈 a 〉

After introductions and unfolding P1 and P2 as defined for this theorem, the proof
state is

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : ∀(c′ : context), c = (c′, δ) → c′ � δ → c′, [o] � a

∀(c′ : context), c = (c′, δ) → c′ � δ → c′ � 〈 a 〉

Next we make introductions from the goal.

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : ∀(c′ : context), c = (c′, δ) → c′ � δ → c′, [o] � a

c′ : context
IP1 : c = (c′, δ)

IP2 : c
′ � δ

c′ � 〈 a 〉

6. SPECIFICATION LOGIC METATHEORY 65

Next we substitute (c′, δ) for c using IP1 and rename c′ to Γ0 in IHb1 to distinguish
the bound variable from the free variable c′. Now ignore IP1.

H1 : o ∈ c′, δ

Hb1 : c
′, δ, [o] � a

IHb1 : ∀(Γ0 : context), (c′, δ) = (Γ0, δ) → Γ0 � δ → Γ0, [o] � a

c′ : context
IP2 : c

′ � δ

c′ � 〈 a 〉

We can get a new premise P3 : c′, [o] � a by specializing IHb1 with c′, a reflexivity
lemma and IP2. Now ignore IHb1 which is no longer needed and Hb1 which we can
get from bc_weakening (Theorem 6.2) and P3.

H1 : o ∈ c′, δ

c′ : context
IP2 : c

′ � δ

P3 : c
′, [o] � a

c′ � 〈 a 〉

We can apply the context lemma elem_inv to H1 to get the premise (o ∈ c′) ∨ (o =
δ). Applying inversion to this, we have two new subgoals with diverging sets of
assumptions. In the second we substitute δ for o by H1 in that proof state.

H1 : o ∈ c′ H1 : o = δ

c′ : context c′ : context
IP2 : c

′ � δ IP2 : c
′ � δ

P3 : c
′, [o] � a P3 : c

′, [δ] � a

c′ � 〈 a 〉 c′ � 〈 a 〉

The left subgoal is provable by first applying g_dyn to get subgoals o ∈ c′ and
c′, [o] � a, both proven by assumption.

The proof on the right will be continued with an induction over δ. The property
to prove is

P0 : oo → Prop := λ(δ : oo) .
∀(c′ : context)(a : atm),

c′ � δ → c′, [δ] � a → c′ � 〈 a 〉

6. SPECIFICATION LOGIC METATHEORY 66

We will now look at a specific subcase of this induction.

Subcase δ = o1 −→ o2 :

In this case we prove the appropriate antecedent of the induction principle for
induction over δ (see Figure 3.5), shown below.

∀(o1 o2 : oo), P0 o1 → P0 o2 → P0 (o1 −→ o2)

The expanded proof state after premise introductions is:

IH 1 : ∀(c′ : context)(a : atm), c′ � o1 → c′, [o1] � a → c′ � 〈 a 〉
IH 2 : ∀(c′ : context)(a : atm), c′ � o2 → c′, [o2] � a → c′ � 〈 a 〉

c′ : context
IP2 : c

′ � (o1 −→ o2)

P3 : c
′, [o1 −→ o2] � a

c′ � 〈 a 〉
We can apply inversion to the premises IP2 and P3 to get new assumptions in

the context.
IH 1 : ∀(c′ : context)(a : atm), c′ � o1 → c′, [o1] � a → c′ � 〈 a 〉
IH 2 : ∀(c′ : context)(a : atm), c′ � o2 → c′, [o2] � a → c′ � 〈 a 〉

c′ : context
IP2 : c

′, o1 � o2

P31 : c
′, [o2] � a

P32 : c
′ � o1

c′ � 〈 a 〉
IH 1 is not useful here, since we have no way to prove sequents with o1 focused.
Applying IH 2 and ignoring induction hypotheses, we have:

c′ : context
IP2 : c

′, o1 � o2

P31 : c
′, [o2] � a

P32 : c
′ � o1

(c′, o2, [o2] � a), (c′ � o2), (c
′, [o2] � a)

6. SPECIFICATION LOGIC METATHEORY 67

The first subgoal is proven using bc_weakening (Theorem 6.2) and assumption P31 ,
and the third subgoal by P31 .

On trying to prove the second subgoal, we should reflect on two things. First,
proving c′�o2 from the assumptions IP2 and P32 would be a use of the goal-reduction
cut rule. Second, we are proving the subcase corresponding to the g_dyn rule and
the only sequent premise of this rule is a backchaining sequent; we only get the
backchaining part of the cut rule in the induction hypothesis. To illustrate this,
recall that for this subcase we have c, [o]� a and the induction hypothesis P2 c o a in
the context of assumptions. The induction hypothesis expands to

∀(c′ : context), c = (c′, δ) → c′ � δ → c′, [o] � a

Combining these assumptions we have

c′, δ, [o] � a → c′ � δ → c′, [o] � a

which is the conjunct of the cut rule for backchaining sequents. Combining the above
observations, we see that this branch cannot be continued any further.

6.2.2 Subcase for g_dyn: Original Proof Structure
Convinced of the necessity of our original proof structure, now we will move on with
our proof of the cut rule by nested inductions, first on the cut formula δ then over the
sequent premises with δ in the context. Below is a proof of the g_dyn subcase where
δ = o1 −→ o2. The g_dyn subcases for other formula constructions follow similarly.

Case δ = o1 −→ o2 :

From Figure 3.5, the antecedent of the oo induction principle for this case is

∀(o1 o2 : oo), P o1 → P o2 → P (o1 −→ o2)

where P o1 and P o2 are induction hypotheses and P is as defined at the start of this
proof. Expanding the goal (we will wait to expand the premises), the proof state is

IH 1 : P o1

IH 2 : P o2

(∀(c : context)(o : oo), c � o → ∀(c′ : context),
c = (c′, (o1 −→ o2)) → c′ � (o1 −→ o2) → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a → ∀(c′ : context),
c = (c′, (o1 −→ o2)) → c′ � (o1 −→ o2) → c′, [o] � a)

6. SPECIFICATION LOGIC METATHEORY 68

Next we have the mutual induction over sequents. As stated above, we will only show
the subcase for the g_dyn rule.

Subcase D ∈ Γ Γ, [D] � A

Γ � 〈 A 〉
g_dyn :

The goal for this subcase is

∀(c : context)(o : oo)(a : atm), o ∈ c → c, [o] � a → P2 c o a → P1 c 〈 a 〉

After introductions, the proof state is

IH 1 : P o1

IH 2 : P o2

H1 : o ∈ c

Hb1 : c, [o] � a

IHb1 : ∀(c′ : context), c = (c′, o1 −→ o2) → c′ � (o1 −→ o2) → c′, [o] � a

c′ : context
IP1 : c = c′, o1 −→ o2

IP2 : c
′ � o1 −→ o2

c′ � 〈 a 〉

Next substitute (c′, o1 −→ o2) for c using IP1 and rename c′ to Γ0 in IHb1 to distin-
guish the bound variable from the free variable c′. Now ignore IP1.

IH 1 : P o1

IH 2 : P o2

H1 : o ∈ (c′, o1 −→ o2)

Hb1 : c
′, o1 −→ o2, [o] � a

IHb1 : ∀(Γ0 : context),
(c′, o1 −→ o2) = (Γ0, o1 −→ o2) → Γ0 � (o1 −→ o2) → Γ0, [o] � a

c′ : context
IP2 : c

′ � o1 −→ o2

c′ � 〈 a 〉

We can specialize IHb1 with c′, a reflexivity lemma and IP2 to get the new premise P3 :
c′, [o]�a and apply elem_inv (Lemma 5.1) toH1 to get (o ∈ c′)∨(o = o1 −→ o2). Now
ignore IHb1 and Hb1 (we can get the latter from assumption P3 and bc_weakening,
Theorem 6.2).

6. SPECIFICATION LOGIC METATHEORY 69

IH 1 : P o1

IH 2 : P o2

H1 : (o ∈ c′) ∨ (o = o1 −→ o2)

IP2 : c
′ � o1 −→ o2

P3 : c
′, [o] � a

c′ � 〈 a 〉

Inverting H1, we get two new subgoals with different sets of assumptions. In the
second we substitute o1 −→ o2 for o using H1 in that proof state.

IH 1 : P o1 IH1 : P o1

IH 2 : P o2 IH2 : P o2

H1 : o ∈ c′ H1 : o = o1 −→ o2

IP2 : c
′ � o1 −→ o2 IP2 : c

′ � o1 −→ o2

P3 : c
′, [o] � a P3 : c

′, [o1 −→ o2] � a

c′ � 〈 a 〉 c′ � 〈 a 〉

To prove the first, we apply g_dyn to the goal, then need to prove o ∈ c′ and c′, [o]�a
which are both provable by assumption.

For the second (right) subgoal, it will be necessary to apply inversion to some
assumptions to get structurally simpler assumptions, before being able to apply the
induction hypotheses IH 1 and IH 2. Inverting IP2 and P3, and unfolding P , we have:

IH 1 : (∀(c : context)(o : oo), c � o →
∀(c′ : context), c = (c′, o1) → c′ � o1 → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a →
∀(c′ : context), c = (c′, o1) → c′ � o1 → c′, [o] � a)

IH 2 : (∀(c : context)(o : oo), c � o →
∀(c′ : context), c = (c′, o2) → c′ � o2 → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a →
∀(c′ : context), c = (c′, o2) → c′ � o2 → c′, [o] � a)

IP2 : c
′, o1 � o2

P31 : c
′ � o1

P32 : c
′, [o2] � a

c′ � 〈 a 〉

6. SPECIFICATION LOGIC METATHEORY 70

Backchaining on the first conjunct of IH 2, instantiating c with (c′, o2), gives three
new subgoals.

IH 1 : (∀(c : context)(o : oo), c � o →
∀(c′ : context), c = (c′, o1) → c′ � o1 → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a →
∀(c′ : context), c = (c′, o1) → c′ � o1 → c′, [o] � a)

IH 2 : (∀(c : context)(o : oo), c � o →
∀(c′ : context), c = (c′, o2) → c′ � o2 → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a →
∀(c′ : context), c = (c′, o2) → c′ � o2 → c′, [o] � a)

P31 : c
′ � o1

P32 : c
′, [o2] � a

IP2 : c
′, o1 � o2

(c′, o2 � 〈 a 〉), (c′, o2 = c′, o2), (c
′ � o2)

For the first, apply g_dyn, then we need to prove o2 ∈ (c′, o2) (proven by elem_self,
Lemma 5.3) and c′, o2, [o2]� a (proven by bc_weakening, Theorem 6.2, and assump-
tion P32). The second is proven by reflexivity. For the third, we backchain on the
first conjunct of IH 1, instantiating c with (c′, o1), and get three new subgoals.

IH 1 : (∀(c : context)(o : oo), c � o →
∀(c′ : context), c = (c′, o1) → c′ � o1 → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a →
∀(c′ : context), c = (c′, o1) → c′ � o1 → c′, [o] � a)

IH 2 : (∀(c : context)(o : oo), c � o →
∀(c′ : context), c = (c′, o2) → c′ � o2 → c′ � o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] � a →
∀(c′ : context), c = (c′, o2) → c′ � o2 → c′, [o] � a)

P31 : c
′ � o1

P32 : c
′, [o2] � a

IP2 : c
′, o1 � o2

(c′, o1 � o2), (c
′, o1 = c′, o1), (c

′ � o1)

The sequent subgoals are proven by assumption and the other by reflexivity.

6. SPECIFICATION LOGIC METATHEORY 71

Proof.
Hint Resolve context_sub_sup.
eapply seq_mutind; intros;
try (econstructor; eauto; eassumption).
Qed.

Figure 6.1: Coq proof of monotone (Theorem 6.7)

Proof.
Hint Resolve gr_weakening context_swap.
induction delta; eapply seq_mutind; intros;
subst; try (econstructor; eauto; eassumption).
...

Figure 6.2: Coq proof of 98/105 cases of cut_admissible (Theorem 6.8)

The g_dyn subcases for the remaining six constructors of oo follow a similar ar-
gument requiring inversion on hypotheses and induction hypothesis specialization.

From this presentation we can see that working through the details for every
case can be a tedious and repetitive task. We later see a generalization that helps
us to understand what subcases have the same structure and separate out the chal-
lenging cases. This understanding leads us to a condensed automated Coq proof
for monotone (Theorem 6.7, see Figure 6.1) and proofs of 98 of 105 subcases in the
proof of cut_admissible (Theorem 6.8, see Figure 6.2 where delta is the cut formula
in the implementation, in place of δ).

Chapter 7

Generalized Specification Logic

All non-axiomatic rules of the SL have some number of premises that are either
non-sequent predicates, goal-reduction sequents, or backchaining sequents. Also, all
rule conclusions are sequents; this is necessary to encode these rules in inductive
types grseq and bcseq. With this observation, we can generalize the rules of the
SL inference system to aid our understanding and presentation of proofs presented in
Chapter 6

Here we present generalized specification logic rules to reduce the number of
induction cases and allow us to partition cases of proofs about the original SL based
on rule structure. Our goal is to gain insight into the high-level structure of such
inductive proofs, providing the proof writer and reader with the ability to understand
where the difficult cases are and how similar cases can be handled in a general way.

All rules have one of the following forms:

Qm(〈c, o〉)
∀(xn,sn : Rn,sn),(c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
∀(yp,tp : Sp,tp),(c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap) gr_rulec � o

Qm(〈c, o〉)
∀(xn,sn : Rn,sn),(c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
∀(yp,tp : Sp,tp),(c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

bc_rule
c, [o] � a

where m,n, p represent the (possibly zero) number of non-sequent premises, goal-
reduction sequent premises, and backchaining sequent premises, respectively. Note
that for all rules in our implemented SL, 0 ≤ m ≤ 1, 0 ≤ n ≤ 2, and 0 ≤ p ≤ 1.

72

7. GENERALIZED SPECIFICATION LOGIC 73

We call this collection of inference rules consisting of gr_rule and bc_rule the
generalized specification logic (GSL). This is not implemented in Coq as the previously
described SL is; but rather all rules of the SL can be instantiated from the two rules
of the GSL (as will be seen in Section 7.1). The GSL allows us to investigate the SL
without needing to consider each of the 15 rules of the SL separately. This makes it
possible to more efficiently study and explain the metatheory of the SL.

Much of the notation used in these rules requires further explanation. A hor-
izontal bar above an element with some subscript index, say z, means we have a
collection of such items indexed from 1 to z. For example, the “premise” Qm(〈c, o〉)
represents the m premises Q1(〈c, o〉), . . . , Qm(〈c, o〉). The premises with sequents can
possibly have local quantification. For i = 1, . . . , n, (xi,si : Ri,si) represents the prefix
(xi,1 : Ri,1) · · · (xi,si : Ri,si).

The notation (〈·〉) is used to list arguments from the conclusion that may be used
in instances of terms where it occurs. We wish to show how elements of the rule
conclusion propagate through a proof.

Given types T0, T1, . . . , Tz, when we write F (〈a1 : T1, . . . , az : Tz〉) : T0, we mean
a term of type T0 that may contain any (sub)terms appearing in conclusion terms
a1, . . . , az. For example, given γ1(〈D −→ G : oo〉) : context, we may “instantiate” this
expression to {D}. We often omit types and use definitional notation, e.g., in this
case we may write γ1(〈D −→ G〉) := {D}.

We infer the following typing judgments from the GSL rules:

• For i = 1, . . . ,m, the definition of Qi may use the context and formula of the
conclusion, so with full typing information, Qi(〈c : context, o : oo〉) : Prop

• For j = 1, . . . , n, SL context γj may use the formula of the conclusion and
SL formula Fj may use the formula of the conclusion and locally quantified
variables. So with full typing information, γj(〈o : oo〉) : context and Fj(〈o :
oo, xj,1 : Rj,1, . . . , xj,sj : Rj,sj〉) : oo

• For k = 1, . . . , p, SL context γ′
k may use the formula of the conclusion and

SL formula F ′
k may use the formula of the conclusion and locally quantified

variables. So with full typing information γ′
k(〈o : oo〉) : context and F ′

k(〈o :
oo, yk,1 : Sk,1, . . . , yk,tk : Sk,tk〉) : oo

7.1 SL Rules from GSL Rules
The rules of the GSL can be instantiated to obtain the SL by specifying the values
of the variables in the GSL rules. We first fill in m, n, and p. Then for i = 1, . . . ,m,
we specify Qi. For j = 1, . . . , n, we specify sj, γj, Fj, xj,1, …, xj,sj , and Rj,1, …,
Rj,sj . For k = 1, . . . , p, we specify γ′

k, F ′
k, yk,1, …, yk,tk , and Sk,1, …, Sk,tk . Below are

instantiations for all rules of the SL.

7. GENERALIZED SPECIFICATION LOGIC 74

Rule m n p c o

A :− G Γ � G
Γ � 〈 A 〉

g_prog 1 1 0 Γ 〈 A 〉

s1 := 0
Q1(〈Γ, 〈 A 〉〉) := A :− G γ1(〈〈 A 〉〉) := ∅ F1(〈〈 A 〉〉) := G

D ∈ Γ Γ, [D] � A

Γ � 〈 A 〉
g_dyn 1 0 1 Γ 〈 A 〉

t1 := 0 a1 := A
Q1(〈Γ, 〈 A 〉〉) := D ∈ Γ γ′

1(〈〈 A 〉〉) := ∅ F ′
1(〈〈 A 〉〉) := D

Γ � T
g_tt 0 0 0 Γ T

Γ � G1 Γ � G2

Γ � G1&G2

g_and 0 2 0 Γ G1&G2

s1 := 0 s2 := 0
γ1(〈G1&G2〉) := ∅ F1(〈G1&G2〉) := G1

γ2(〈G1&G2〉) := ∅ F2(〈G1&G2〉) := G2

Γ , D � G
Γ � D −→ G

g_imp 0 1 0 Γ D −→ G

s1 := 0 γ1(〈D −→ G〉) := {D} F1(〈D −→ G〉) := G

∀(E : expr con), (proper E → Γ � GE)

Γ � All G
g_all 0 1 0 Γ All G

s1 := 2 x1,1 := E R1,1 := expr con x1,2 := H R1,2 := proper E
γ1(〈All G〉) := ∅ F1(〈All G,E,H〉) := G E

∀(E : X), (Γ � GE)

Γ � Allx G
g_allx 0 1 0 Γ Allx G

s1 := 1 x1,1 := E R1,1 := X
γ1(〈Allx G〉) := ∅ F1(〈Allx G,E,H〉) := G E

proper E Γ � GE

Γ � Some G
g_some 1 1 0 Γ Some G

s1 := 0
Q1(〈Γ, Some G〉) := proper E γ1(〈Some G〉) := ∅ F1(〈Some G〉) := G E

7. GENERALIZED SPECIFICATION LOGIC 75

Rule m n p c o

Γ, [〈 A 〉] � A
b_match 0 0 0 Γ 〈 A 〉

Γ, [D1] � A

Γ, [D1&D2] � A
b_and1 0 0 1 Γ D1&D2

t1 := 0 a1 := A γ′
1(〈D1&D2〉) := ∅ F ′

1(〈D1&D2〉) := D1

Γ, [D2] � A

Γ, [D1&D2] � A
b_and2 0 0 1 Γ D1&D2

t1 := 0 a1 := A γ′
1(〈D1&D2〉) := ∅ F ′

1(〈D1&D2〉) := D2

Γ � G Γ, [D] � A

Γ, [G −→ D] � A
b_imp 0 1 1 Γ G −→ D

s1 := 0 t1 := 0 a1 := A
γ1(〈G −→ D〉) := ∅ F1(〈G −→ D〉) := G
γ′
1(〈G −→ D〉) := ∅ F ′

1(〈G −→ D〉) := D

proper E Γ, [DE] � A

Γ, [All D] � A
b_all 1 0 1 Γ All D

t1 := 0 a1 := A
Q1(〈Γ, All D〉) := proper E γ′

1(〈All D〉) := ∅ F ′
1(〈All D〉) := D E

Γ, [DE] � A

Γ, [Allx D] � A
b_allx 0 0 1 Γ All D

t1 := 0 a1 := A
γ′
1(〈Allx D〉) := ∅ F ′

1(〈Allx D〉) := D E

∀(E : expr con), (proper E → Γ, [Dx] � A)

Γ, [Some D] � A
b_some 0 0 1 Γ Some D

t1 := 2 y1,1 := E S1,1 := expr con y1,2 := H S1,2 := proper E a1 := A
γ′
1(〈Some D,E,H〉) := ∅ F ′

1(〈Some D,E,H〉) := D E

Notice that for the g_dyn rule, D appears in Q1, even though it is not in the ar-
gument list of Q1. The notation (〈·〉) only specifies arguments from the rule conclusion.
Any variables that only appear in the premises of a rule of the SL are also permitted
to appear in the propositions, formulas, and contexts when specializing the premises
of a GSL rule to obtain the premises of a specific SL rule (these are the signature
variables for induction subcases corresponding to these rules).

Chapter 8

Generalized Specification Logic
Metatheory

8.1 GSL Induction Part I: A Restricted Theorem
Recall from Chapter 6 that when proving SL metatheory, we were concerned with
proving statements of the form

(∀ (c : context) (o : oo),
(c � o) → (P1 c o)) ∧

(∀ (c : context) (o : oo) (a : atm),
(c, [o] � a) → (P2 c o a))

In the GSL we now have two rules instead of the 15 of the SL. To prove this
statement by mutual structural induction over the GSL we will have two subcases;
one for each of the rules gr_rule and bc_rule. From the rule gr_rule (resp. bc_rule)
the induction subcase has n induction hypotheses for the n goal-reduction sequent
premises and p induction hypotheses for the p backchaining sequent premises of the
rule. We also assume the m non-sequent premises. After introductions, the proof
state is:

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn), P1 (c ∪ γn(〈o〉)) (Fn(〈o, xn,sn〉))
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

IHbp : ∀(yp,tp : Sp,tp), P2 (c ∪ γ′
p(〈o〉)) (F ′

p(〈o, yp,tp〉)) ap

P1 c o (resp. P2 c o a)

76

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 77

Given specific P1 and P2, we could unfold uses of these predicates and continue
the proof. Suppose

P1 := λ(c : context) (o : oo).
∀(c′ : context), IA1(〈c, c′〉) → · · · → IAw(〈c, c′〉) → c′ � o and

P2 := λ(c : context) (o : oo) (a : atm).
∀(c′ : context), IA1(〈c, c′〉) → · · · → IAw(〈c, c′〉) → c′, [o] � a

Each IAi is a predicate that we call an induction assumption. P1 and P2 can be
instantiated to specific statements about the GSL by defining these IAi. Notice that
this is a generalization of all induction predicates we have seen so far. The underlining
of sequents in the definitions of P1 and P2 is to highlight that these are the sequents
we apply the generalized rules to (following introductions).

First we unfold uses of P1 and P2 in the proof state.

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(c

′ : context),

IA1(〈c ∪ γn(〈o〉), c′〉) → · · · → IAw(〈c ∪ γn(〈o〉), c′〉) → c′ � Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

IHbp : ∀(yp,tp : Sp,tp)(c
′ : context),

IA1(〈c ∪ γ′
p(〈o〉), c′〉) → · · · → IAw(〈c ∪ γ′

p(〈o〉), c′〉) → c′, [F ′
p(〈o, yp,tp〉)] � ap

∀(c′ : context), IA1(〈c, c′〉) → · · · → IAw(〈c, c′〉) → c′ � o

(resp. ∀(c′ : context), IA1(〈c, c′〉) → · · · → IAw(〈c, c′〉) → c′, [o] � a)

Next we introduce the variables and induction assumptions. Then the goal is
either c′ � o or c′, [o] � a. Apply gr_rule or bc_rule as appropriate, and either will
give (m + n + p) new subgoals which come from the three premise forms in these
rules, with appropriate instantiations for the externally quantified variables. c′ is a
new signature variable. See Figure 8.1 for this proof state.

8.1.1 Sequent Subgoals
To prove the last (n+ p) subgoals (the “second” and “third” subgoals in Figure 8.1)
we first introduce any locally quantified variables as signature variables.

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 78

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(c

′ : context),

IA1(〈c ∪ γn(〈o〉), c′〉) → · · · → IAw(〈c ∪ γn(〈o〉), c′〉) → c′ � Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

IHbp : ∀(yp,tp : Sp,tp)(c
′ : context),

IA1(〈c ∪ γ′
p(〈o〉), c′〉) → · · · → IAw(〈c ∪ γ′

p(〈o〉), c′〉) → c′, [F ′
p(〈o, yp,tp〉)] � ap

c′ : context

IPw : IAw(〈c, c′〉)

Qm(〈c′, o〉),
∀(xn,sn : Rn,sn), (c

′ ∪ γn(〈o〉) � Fn(〈o, xn,sn〉)),
∀(yp,tp : Sp,tp), (c

′ ∪ γ′
p(〈o〉), [F ′

p(〈o, yp,tp〉)] � ap)

Figure 8.1: Proof state of GSL induction after rule application

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(c

′ : context),

IA1(〈c ∪ γn(〈o〉), c′〉) → · · · → IAw(〈c ∪ γn(〈o〉), c′〉) → c′ � Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

IHbp : ∀(yp,tp : Sp,tp)(c
′ : context),

IA1(〈c ∪ γ′
p(〈o〉), c′〉) → · · · → IAw(〈c ∪ γ′

p(〈o〉), c′〉) → c′, [F ′
p(〈o, yp,tp〉)] � ap

c′ : context

IPw : IAw(〈c, c′〉)
xn,sn : Rn,sn (resp. yp,tp : Sp,tp)

c′ ∪ γn(〈o〉) � Fn(〈o, xn,sn〉) (resp. c′ ∪ γ′
p(〈o〉), [F ′

p(〈o, yp,tp〉)] � ap)

For the goal-reduction (resp. backchaining) subgoals, for j = 1, . . . , n (resp.
k = 1, . . . , p), we apply induction hypothesis IHg j (resp. IHbk), instantiating c′ in

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 79

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(c

′ : context),

IA1(〈c ∪ γn(〈o〉), c′〉) → · · · → IAw(〈c ∪ γn(〈o〉), c′〉) → c′ � Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

IHbp : ∀(yp,tp : Sp,tp)(c
′ : context),

IA1(〈c ∪ γ′
p(〈o〉), c′〉) → · · · → IAw(〈c ∪ γ′

p(〈o〉), c′〉) → c′, [F ′
p(〈o, yp,tp〉)] � ap

c′ : context

IPw : IAw(〈c, c′〉)
xn,sn : Rn,sn (resp. yp,tp : Sp,tp)

IAw(〈c ∪ γn(〈o〉), c′ ∪ γn(〈o〉)〉) (resp. IAw(〈c ∪ γ′
p(〈o〉), c′ ∪ γ′

p(〈o〉)〉))

Figure 8.2: Incomplete proof branches for sequent premises

the induction hypothesis with c′ ∪ γj(〈o〉) (resp. c′ ∪ γ′
k(〈o〉)). This yields the proof state

in Figure 8.2 for goal-reduction premises (resp. backchaining premises).
The proof state in Figure 8.2 will be continued for specific theorem statements

which will have the induction assumptions defined.

8.1.2 Non-Sequent Subgoals
The proof of the first m subgoals in Figure 8.1 depends on the definition of Qi for
i = 1 . . .m. If the first argument (a context) is not used in its definition, then
Qi(〈c′, o〉) is provable by assumption Hi since we will have Qi(〈c′, o〉) = Qi(〈c, o〉). Any
other dependencies on signature variables can be ignored since we can instantiate the
variables as we choose when backchaining over the generalized rule. We will illustrate
this by considering each rule with non-sequent premises, starting from the proof state
in Figure 8.1 and, for (i = 1, . . . ,m), (j = 1, . . . , n), (k = 1, . . . , p), show how to
define Qi, γj, Fj, γ′

k, and F ′
k and finish the subproofs where possible.

There are four rules of the SL with non-sequent premises: g_prog, g_dyn,
g_some, and b_all.

Case A :− G Γ � G
Γ � 〈 A 〉

g_prog :

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 80

This rule has one non-sequent premise and one goal-reduction sequent premise
with no local quantification, so m = n = 1, p = 0, s1 = 0, o = 〈 A 〉, and c = Γ. Then
we are proving the following:

H1 : Q1(〈Γ, 〈 A 〉〉)
Hg1 : Γ ∪ γ1(〈〈 A 〉〉) � F1(〈〈 A 〉〉)
IHg1 : ∀(c′ : context), IA1(〈Γ, c′〉) → · · · → IAw(〈Γ, c′〉) → c′ � F1(〈〈 A 〉〉)

c′ : context

IPw : IAw(〈Γ, c′〉)

Q1(〈c′, 〈 A 〉〉)

Define Q1(〈_, 〈 A 〉〉) := A :− G, γ1(〈〈 A 〉〉) := ∅, and F1(〈〈 A 〉〉) := G, where G : oo is a
signature variable. Now the proof state is

H1 : A :− G

Hg1 : Γ � G

IHg1 : ∀(c′ : context), IA1(〈Γ, c′〉) → · · · → IAw(〈Γ, c′〉) → c′ � G

c′ : context

IPw : IAw(〈Γ, c′〉)

A :− G

which is completed by assumption H1.

Case D ∈ Γ Γ, [D] � A

Γ � 〈 A 〉
g_dyn :

This rule has one non-sequent premise and one backchaining sequent premise
with no local quantification, so m = p = 1, n = 0, c = Γ, and o = 〈 A 〉. Define
Q1(〈Γ, 〈 A 〉〉) := D ∈ Γ, γ′

1(〈〈 A 〉〉) := ∅, and F ′
1(〈〈 A 〉〉) := D, where D : oo is a signature

variable. Then we need to prove what is displayed in Figure 8.3. Here we do not have
enough information to finish this branch of the proof. An induction assumption may
be of use, but we will need specific P1 and P2. We will refer to Figure 8.3 later when
proving specific theorem statements (i.e. each IAi defined).

Case proper E Γ � GE

Γ � Some G
g_some :

This rule has one non-sequent premise and one goal-reduction sequent premise
with no local quantification, so m = n = 1, p = 0, c = Γ, and o = Some G. Define

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 81

H1 : D ∈ Γ

Hb1 : Γ, [D] � a1

IHb1 : ∀(c′ : context), IA1(〈Γ, c′〉) → · · · → IAw(〈Γ, c′〉) → c′, [D] � a1

c′ : context

IPw : IAw(〈Γ, c′〉)

D ∈ c′

Figure 8.3: Incomplete proof branch (g_dyn case)

Q1(〈Γ, Some G〉) := proper E, γ1(〈Some G〉) := ∅, and F1(〈Some G〉) := G E where
E : expr con is a signature variable. Then we are proving the following:

H1 : proper E

Hg1 : Γ � G E

IHg1 : ∀(c′ : context), IA1(〈Γ, c′〉) → · · · → IAw(〈Γ, c′〉) → c′ � G E

c′ : context

IPw : IAw(〈Γ, c′〉)

proper E

which is completed by assumption H1.

Case proper E Γ, [DE] � A

Γ, [All D] � A
b_all :

This case is proven as above but with m = p = 1, n = 0, c = Γ, and o = All D.
Define Q1(〈Γ, All D〉) := proper E, γ′

1(〈All D〉) := ∅, and F ′
1(〈All D〉) := D E where

E : expr con is a signature variable. Then we are proving:

H1 : proper E

Hb1 : Γ, [D E] � a1

IHb1 : ∀(c′ : context), IA1(〈Γ, c′〉) → · · · → IAw(〈Γ, c′〉) → c′, [D E] � a1

c′ : context

IPw : IAw(〈Γ, c′〉)

proper E

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 82

The goal proper E is provable by the assumption of the same form as in the previous
case.

In the next two sections we will return to this idea of proofs about a specification
logic from a generalized form of SL rule to prove properties of the SL once we have
fully defined P1 and P2. The proof states in Figures 8.2 and 8.3 (the incomplete
branches) will be roots of these explanations.

8.2 GSL Induction Part II: The Structural Rules
Hold

Recall from Section 6.1 we prove the standard rules of weakening, contraction and ex-
change for both the goal-reduction and backchaining sequents as corollaries of monotone
(Theorem 6.7) which states

(∀ (c : context) (o : oo),
(c � o) → (P1 c o)) ∧

(∀ (c : context) (o : oo) (a : atm),
(c, [o] � a) → (P2 c o a))

where P1 and P2 are defined as

P1 :=λ (c : context)(o : oo) .
∀ (c′ : context), c ⊆ c′ → c′ � o

P2 :=λ (c : context)(o : oo)(a : atm) .
∀ (c′ : context), c ⊆ c′ → c′, [o] � a

We build on the inductive proof in Section 8.1 over the GSL to prove monotone
for this new logic. Recall that when we took the proof as far as we could we had three
remaining groups of branches to finish (m+n+ p subgoals), one group for rules with
non-sequent premises depending on the context of the rule conclusion, and one for
each kind of sequent premise (see Figures 8.2 and 8.3). We will continue this effort
below, using the P1 and P2 defined for this theorem. This means we will have one
induction assumption (i.e., w = 1) which is IA1(〈c, c′〉) := c ⊆ c′.

8.2.1 Sequent Subgoals
First we will prove the subgoals coming from the sequent premises, building on Fig-
ure 8.2 and using IA1 as defined above. The proof state for goal-reduction (resp.
backchaining) premises is

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 83

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(c

′ : context), (c ∪ γn(〈o〉)) ⊆ c′ → c′ � Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

IHbp : ∀(yp,tp : Sp,tp)(c
′ : context), (c ∪ γ′

p(〈o〉)) ⊆ c′ → c′, [F ′
p(〈o, yp,tp〉)] � ap

c′ : context
IP1 : c ⊆ c′

xn,sn : Rn,sn (resp. yp,tp : Sp,tp)

(c ∪ γn(〈o〉)) ⊆ (c′ ∪ γn(〈o〉)) (resp. (c ∪ γ′
p(〈o〉)) ⊆ (c′ ∪ γ′

p(〈o〉)))

The goal is provable by context_sub_sup (Lemma 5.6) and assumption IP1.

8.2.2 Non-Sequent Subgoals
Still to be proven are the subgoals for non-sequent premises. As seen in Section 8.1.2,
the only rule of the SL whose corresponding subcase still needs to be proven is g_dyn.
From Figure 8.3 and using P1 and P2 as defined here, we are proving

H1 : D ∈ Γ

Hb1 : Γ, [D] � a1

IHb1 : ∀(c′ : context),Γ ⊆ c′ → c′, [D] � a1

c′ : context
IP1 : Γ ⊆ c′

D ∈ c′

Unfolding the definition of context subset in IP1 it becomes ∀(o : oo), o ∈ Γ → o ∈ c′.
Backchaining on this form of the goal gives subgoal D ∈ Γ, provable by assumption
H1.

In Section 8.1, we explored how to prove statements about the GSL for a re-
stricted form of theorem statement. There were three classes of incomplete proof
branches that had a final form shown in Figures 8.2 and 8.3. In Section 7.1 we saw
how to derive the SL from the GSL. So here we have proven a structural theorem for
the rules of the GSL in a general way that can be followed for any SL rule.

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 84

8.3 GSL Induction Part III: Cut Rule Proven Ad-
missible

Recall from Section 6.2 we are proving ∀(δ : oo), P δ with P defined as

P : oo → Prop := λ(δ : oo) .
(∀(c : context)(o : oo),

c � o → P1 c o) ∧
(∀(c : context)(o : oo)(a : atm),

c, [o] � a → P2 c o a),

where

P1 : context → oo → Prop :=

λ(c : context)(o : oo) .
∀(c′ : context), c = (c′, δ) → c′ � δ → c′ � o

P2 : context → oo → atm → Prop :=

λ(c : context)(o : oo)(a : atm) .
∀(c′ : context), c = (c′, δ) → c′ � δ → c′, [o] � a

As in the GSL proof of monotone (Theorem 6.7), we build on the inductive proof
in Chapter 8, unfolding P1 and P2 as defined here. Recall that we have now intro-
duced assumptions and applied the appropriate generalized SL rule to the underlined
sequents in the definition of P1 and P2. For the proof of cut admissibility, there are two
induction assumptions from P1 and P2 (so w = 2). Define IA1(〈c, c′〉) := (c = (c′, δ))
and IA2(〈c, c′〉) := c′ � δ, where δ is the cut formula in the cut rule.

8.3.1 Sequent Subgoals
First we will prove the subgoals coming from the sequent premises, building on Figure
8.2 and using IA1 and IA2 as defined above. For a moment we will ignore the outer
induction over the cut formula δ. By ignore we mean let δ := η where η : oo, and
we will not display the induction hypothesis for this induction. The proof state for
goal-reduction premises (resp. backchaining premises) is

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 85

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) � Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(c

′ : context),

(c ∪ γn(〈o〉)) = (c′, η) → c′ � η → c′ � Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] � ap)

IHbp : ∀(yp,tp : Sp,tp)(c
′ : context),

(c ∪ γ′
p(〈o〉)) = (c′, η) → c′ � η → c′, [F ′

p(〈o, yp,tp〉)] � ap

c′ : context
IP1 : c = (c′, η)

IP2 : c
′ � η

xn,sn : Rn,sn (resp. yp,tp : Sp,tp)

(c ∪ γn(〈o〉) = ((c′ ∪ γn(〈o〉)), η)), (c′ ∪ γn(〈o〉) � η)

(resp. (c ∪ γ′
p(〈o〉) = ((c′ ∪ γ′

p(〈o〉)), η)), (c′ ∪ γ′
p(〈o〉) � η))

To prove the sequent subgoal c′ ∪ γn(〈o〉) � η (resp. c′ ∪ γ′
p(〈o〉) � η), first apply

weakening and the new subgoal is c′ � η (resp. c′ � η), provable by assumption IP2.
The subgoals concerning context equality are proven by context lemmas and

assumption IP1. That is, we rewrite ((c′ ∪ γn(〈o〉)), η) to (c′, η) ∪ γn(〈o〉) (resp. (c′ ∪
γ′
p(〈o〉)), η to (c′, η) ∪ γ′

p(〈o〉)). The new subgoal is c ∪ γn(〈o〉) = (c′, η) ∪ γn(〈o〉) (resp.
(c∪γ′

p(〈o〉) = (c′, η)∪γ′
p(〈o〉)). Apply context_sub_sup (Lemma 5.6) to get assumption

IP1.

8.3.2 Non-Sequent Subgoals
In Section 8.1.2 we saw that the only rule of the SL whose corresponding subcase still
needs to be proven is g_dyn. For the non-sequent subgoals we were able to complete
the proof while the cut formula δ was represented as a parameter (and thus could
have any formula structure). In the remaining non-sequent proof branch we need to
make use of the nested structure of this induction. The proof of this subcase is shown
in detail in Section 6.2.2.

In summary, the outer induction over δ gave seven cases for seven oo constructors.
For each of these, an inner induction over sequents gave 15 new subgoals for 15 rules.
We saw that for 14 of 15 rules, each rule has the same proof structure for every form
of δ. The remaining subgoals were all for the rule g_dyn and were more challenging

8. GENERALIZED SPECIFICATION LOGIC METATHEORY 86

due to the presence of a non-sequent premise that depends on the context of the
conclusion.

Using the generalized proof presented in this chapter and instantiating the GSL to
the SL as in Section 7.1, we have found condensed proofs of monotone (Theorem 6.7)
and cut_admissible (Theorem 6.8).

Chapter 9

Conclusion

In this thesis we have seen how the Coq implementation of Hybrid has been extended
by the addition of a new specification logic (SL) based on hereditary Harrop formu-
las. This extension increases the class of object logics that Hybrid can reason about
efficiently. The metatheory of this SL is formalized in Coq with proofs by mutual
structural induction over the structure of sequent types. We saw the proofs of some
specific subcases and the later insight that many of the cases are proven in a sim-
ilar way. This led to the development of a generalized SL and form of metatheory
statement that we could use to better understand the proofs of the SL metatheory.

9.1 Related Work
Throughout this thesis we have seen some mention of related work. Hybrid is a system
implementing HOAS and as seen in Section 3.6 there are other systems with the same
goal that also use this technique. As previously discussed, Hybrid is the only known
system implementing HOAS in an existing trusted general-purpose theorem prover.
See [9] and [10] for a more in-depth comparison of these systems on benchmarks
defined there.

Although this work is contributing to the area of mechanizing programming lan-
guage metatheory, the majority of the research presented here is applicable to the
more general field of proof theory. We have seen proofs of the admissibility of struc-
tural rules of a specific sequent calculus, as well as a generalized sequent calculus
which we tried to make only as general as necessary to encapsulate the specification
logic presented earlier. Typically these kinds of proofs are by an induction on the
height of derivations, but here we have proofs by mutual structural induction over
dependent sequent types; the structural proofs in this thesis follow the style of Pfen-
ning in [19]. The sequents in our logic do not have a natural number to represent the
height of the derivation. So our presentation of this sequent calculus is perhaps more
“pure” in some sense, but we may have lost a way to reason about some object logics.

87

9. CONCLUSION 88

It is not yet clear if building proof height into the definition sequents is necessary
for studying some object logics. Overall, a better understanding of the relationship
between proofs of the metatheory of sequent calculi by induction on the height of
derivations versus over the structure of sequents is desirable.

9.2 Future Work
The highest priority future task is to show the utility of the new specification logic
in Hybrid. This will be done by presenting an object logic that makes use of the
higher-order nature (in the sense of unrestricted implicational complexity) of the new
specification logic. Object logics that we plan to represent include:

• correspondence between HOAS and de Bruijn encodings of untyped λ-terms;
this is our example OL of Chapter 3 but we have not yet proven Theorems 3.5.1
and 3.5.2 of Section 3.1 (see [25])

• structural characterization of reductions on untyped λ-terms (see [25])

• algorithmic specification of bounded subtype polymorphism in System F (see [21]);
this comes from the POPLmark challenge [1]

We would also like to add automation to proofs containing object logic judgments so
that the user of Hybrid will not need to be an expert user of proof assistants to be
able to use the system.

The encoding of the new Hybrid SL follows the development of the specification
logic of Abella as presented in [25], but it seems that the proofs of the admissibility of
the structural rules differ between these systems. These proofs in Abella are not fully
explained in [25] so some work will need to be done to compare the different proofs.
Also, the proof of cut admissibility for this specification logic in Abella requires a
third conjunct that we did not need for our proof:

∀(c : context)(o : oo)(a : atm), c � o → c, [o] � a → c � 〈 a 〉

Our understanding so far is that these proofs in Abella are over the height of deriva-
tions, which is an implicit parameter; it is not by structural induction over sequents
in the fashion of the proofs founding this thesis.

9. CONCLUSION 89

The End.

Appendix A

Notations

Many symbols are used to denote values of different types. This allows us to impose
some structure that is useful in understanding the work presented later, but is not
actually built in to the system. We summarize the meta-variables used in the
contributions chapters of this thesis. All symbols described here may also be seen
with subscripts or the prime notation (i.e.′) when we need to talk about more than
one term of a given type.

Symbol Type Description
α atm atom representing OL formula in pretty-printed infer-

ence rule notation for Coq statements
a atm atom representing OL formula in linear forms of Coq

statements
A atm atom representing OL formula in SL inference rules
β oo SL formula in pretty-printed inference rule notation for

Coq statements
o oo SL formula in linear form of Coq statements
G oo SL formula representing a goal in SL inference rules
D oo SL formula representing a clause in SL inference rules
Γ context context of assumptions in pretty-printed inference rule

notation for Coq statements and SL inference rules
c context context of assumptions in linear form of theorem state-

ments

We collect here the following additional notations seen in this thesis:

90

A. NOTATIONS 91

Definition Type Notation Notes
atom a atm → oo 〈 a 〉 coerces an atom to a formula
Imp o1 o2 oo → oo → oo o1 −→ o2 implication in SL formula (right

associative)
Conj o1 o2 oo → oo → oo o1&o2 conjunction in SL formula
prog a o atm → oo → Prop a :− o parameter of SL representing OL

inference rules

Bibliography

[1] Brian E. Aydemir et al. Mechanized metatheory for the masses: The PoplMark
challenge. In 18th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), volume 3603 of LNCS, pages 50–65. Springer, 2005.

[2] Chelsea Battell and Amy Felty. The logic of hereditary Harrop formulas as a
specification logic for Hybrid. In 11th International Workshop on Logical Frame-
works and Metalanguages: Theory and Practice (LFMTP), ACM Digital Library,
2016.

[3] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program
Development. Springer, 2004.

[4] Kaustuv Chaudhuri. Focusing strategies in the sequent calculus of synthetic
connectives. In Logic for PRogramming, Artificial Intelligence, and Reasoning,
volume 5330 of LNCS, pages 467–481. Springer, 2008.

[5] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[6] Thierry Coquand and Gerard Huet. The calculus of constructions. Information
and Computation, 1988.

[7] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies: A
tool for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae Elsevier, 34:381–392, 1972.

[8] Amy P. Felty and Alberto Momigliano. Hybrid: A definitional two-level approach
to reasoning with higher-order abstract syntax. Journal of Automated Reasoning,
48(1):43–105, 2012.

[9] Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. The next 700 challenge
problems for reasoning with higher-order abstract syntax representations: Part
1—a common infrastructure for benchmarks. CoRR, abs/1503.06095, 2015.

92

BIBLIOGRAPHY 93

[10] Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. The next 700 challenge
problems for reasoning with higher-order abstract syntax representations: Part
2—a survey. Journal of Automated Reasoning, 55(4):307–372, 2015.

[11] Andrew Gacek. The Abella interactive theorem prover (system description). In
Fourth International Joint Conference on Automated Reasoning, volume 5195 of
LNCS, pages 154–161. Springer, 2008.

[12] William A. Howard. The formulae-as-type notion of construction, 1969. In To
H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism,
pages 479–490. Academic Press, 1980.

[13] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

[14] Raymond McDowell and Dale Miller. Reasoning with higher-order abstract
syntax in a logical framework. ACM Transactions on Computational Logic,
3(1):80–136, January 2002.

[15] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, June 2012.

[16] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[17] Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. ACM
Computing Surveys, 31(3es):1–6, 1999. Article No. 11.

[18] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[19] Frank Pfenning. Structural cut elimination I: Intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, 2000.

[20] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceed-
ings of the ACM-SIGPLAN Conference on Programming Languages Design and
Implementation, pages 199–208. ACM Press, 1988.

[21] Brigitte Pientka. Proof pearl: The power of higher-order encodings in the logical
framework LF. In 20th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), volume 4732 of LNCS, pages 246–261. Springer, 2007.

BIBLIOGRAPHY 94

[22] Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming
and reasoning with deductive systems (system description). In Fifth International
Joint Conference on Automated Reasoning (IJCAR), volume 6173 of LNCS,
pages 15–21. Springer, 2010.

[23] Carsten Schürmann. The Twelf proof assistant. In Twenty-Second International
Conference on Theorem Proving in Higher Order Logics, volume 5674 of LNCS,
pages 79–83. Springer, 2009.

[24] The Coq Development Team. The Coq Proof Assistant Reference Manual. Typ-
iCal Project, April 2014. Version 8.4pl4.

[25] Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek, and Gopalan Nadathur. Rea-
soning about higher-order relational specifications. In 15th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP), pages 157–168. ACM Press, 2013.

Index

λ-tree syntax, 2

Abella, 37
ambient logic, 30

backchaining, 20
backchaining rule, 49

Beluga, 38
binder, 2

calculus of constructions, 6
calculus of inductive constructions, 6

constructor, 21
contraction, 56, 82

Coq, 1, 6
cut admissibility, 61, 84

de Bruijn indices, 3, 28
dependent product, 8
dependent type, 12

derivation, 8

exchange, 56, 82

focusing, 42
forward chaining, 20

generalized specification logic (GSL), 73
goal-reduction rule, 49

higher-order abstract syntax, 2, 30
higher-order hereditary Harrop formulas,

39
Hybrid, 1, 27

induction, 22
induction assumption, 53, 77

induction hypothesis, 22
induction principle, 22
induction property, 22
inductive type, 21

inhabited, 10

mutual induction, 24
mutually inductive type, 24

object logic, 2, 28

polymorphism, 14
POPLmark, 2
proof state, 53

provable sequent, 8

reasoning logic, 30

simply typed λ-calculus, 11
specification logic, 3, 31

structural rules, 56
subgoal, 18

substitution, 8

tactic, 17, 20
tactical, 20

two-level logical framework, 3
type operator, 16

uniform proof, 42

valid sequent, 8

weakening, 56, 82

95

